4.7 Article

Pervasive changes in algal indicators since pre-industrial times: A paleolimnological study of changes in primary production and diatom assemblages from-200 Canadian lakes

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 838, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155938

关键词

Diatoms; Chlorophyll a; Planktonic; Climate change; Sediment; Human impact; Top-bottom

资金

  1. Natural Sciences and Engineering Research Council (NSERC) [NETGP 479720]
  2. Fonds de Recherche du Quebec - Nature and Technologies
  3. Fonds de Recherche du Quebec - Nature and Technologies
  4. Canada Research Chairs program [950-230588)]

向作者/读者索取更多资源

Anthropogenic stressors have widespread impacts on lakes in Canada, leading to changes in primary production and diatom communities. The main drivers of these changes are climate and land use, and different ecozones contribute to variations in diatom assemblages and turnover.
Anthropogenic stressors affect lakes around the world, ranging in scale from catchment-specific pollutants to the global impacts of climate change. Canada has a large number and diversity of lakes, yet it is not well understood how, where, and when human impacts have affected these lakes at a national scale. The NSERC Canadian Lake Pulse Network sought to create the first nationwide database of Canadian lake health, undertaking a multi-year survey of 664 lakes spanning 12 ecozones across Canada. A key objective of the network is to determine where, by how much, and why have Canadian lakes changed during the Anthropocene. To address this objective, we compared sedimentary chlorophyll a and diatoms from modern and pre-industrial sediment intervals of-200 lakes. The lakes spanned a range of sizes, ecozones, and degrees of within-catchment land use change. We inferred the quantity of chlorophyll a, its isomers and main diagenetic products using visible reflectance spectroscopy. We found widespread increases in primary production since pre-industrial times. Primary production increased, on average, across all ecozones, human impact classes, and stratification classes. Likewise, an increase in planktonic diatom taxa over time was detected in the majority of sampled lakes, likely due to recent climate warming. However, regional factors (ecozones) explained the most variation in modern diatom species assemblages as well as their temporal turnover. Furthermore, lakes with high human impact (i.e., higher weighted proportions of human land use in the catchment) exhibited greater taxonomic turnover than lakes with a low human impact class. The greatest diatom turnover was found in the agriculture-rich Prairies and the lowest in the sparsely populated Boreal Shield and Taiga Cordillera ecozones. Overall, our study highlights that drivers operating at different geographic scales (i.e., climatic and land-use changes) have led to significant alterations in algal indicators since pre-industrial times across the country.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据