4.7 Article

Sub-lethal doses of sulfoxaflor impair honey bee homing ability

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 837, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.155710

关键词

Ecotoxicology; A pis melifera; Pesticide exposure; Homing failure; Field experiments

资金

  1. Instituto do Ambiente Tecnologia e Vida
  2. European Union [773554]
  3. FCT [SFRH/BD/133352/2017]
  4. Fundação para a Ciência e a Tecnologia [SFRH/BD/133352/2017] Funding Source: FCT

向作者/读者索取更多资源

Agricultural intensification and pesticide use have negative effects on the homing ability of pollinators, with the new pesticide sulfoxaflor having higher toxicity. Homing ability tests can be used to assess the impact of these pesticides on bee health and provide valuable data for predicting colony health effects.
Agricultural intensification has increased the number of stressors that pollinators are exposed to. Besides increasing landscape fragmentation that limit the supply of flower resources, intensive agricultural practices relying on the use of pesticides to control agricultural pests also affect non-target organisms like honey bees. The use of most pesticides containing neonicotinoids has been severely restricted in the European Union, leaving pesticides containing acetamiprid as the only ones that are still authorized. In the meantime, new substances like sulfoxaflor, that have a similar mode of action acting on the insect's nicotinic acetylcholine receptors (nAChR), have been approved for agricultural use. In Europe and USA, the use of pesticides containing this active ingredient is limited due to toxic effects already reported on bees, but no restrictions regarding this matter were applied in other countries (e.g., Brazil). In this study, homing ability tests with acetamiprid and sulfoxaflor were performed, in which honey bees were fed with three sub-lethal doses from each substance. After exposure, each honey bee was equipped with an RFID chip and released 1 km away from the colony to evaluate their homing ability. No significant effects were detected in honey bees fed with 32, 48 and 61 ng of acetamiprid while a poor performance on their homing ability, with only 28% of them reaching the colony instead of 75%, was detected at a 26 ng/a.s./bee dose of sulfoxaflor. Although, both pesticides act on the nAChR, the higher sulfoxaflor toxicity might be related with the honey bees detoxifying mechanisms, which are more effective on cyano-based neonicotinoids (i.e., acetamiprid) than sulfoximines. With this study we encourage the use of homing ability tests to be a suitable candidate to integrate the future risk assessment scheme, providing valuable data to models predicting effects on colony health that emerge from the individual actions of each bee.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据