4.7 Article

Greenhouse gas fluxes (CO2, N2O and CH4) of pea and maize during two cropping seasons: Drivers, budgets, and emission factors for nitrous oxide

期刊

SCIENCE OF THE TOTAL ENVIRONMENT
卷 849, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.scitotenv.2022.157541

关键词

Corn; Legume; Eddy covariance; Agriculture; Arable land; Management

资金

  1. Swiss National Science Foundation (SNSF)
  2. [407340_172433]

向作者/读者索取更多资源

Agriculture contributes considerably to global greenhouse gas emissions. The study used the eddy covariance technique and the random forest technique to investigate GHG fluxes in croplands. Environmental and vegetation factors were found to be more important drivers of GHG fluxes at field scale. Pea and maize acted as GHG sinks during the growing seasons, but substantial N2O emissions were observed during the early establishment phase.
Agriculture contributes considerably to the increase of global greenhouse gas (GHG) emissions. Hence, magnitude and drivers of temporal variations in carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) fluxes in croplands are urgently needed to develop sustainable, climate-smart agricultural practices. However, our knowledge of GHG fluxes from croplands is still very limited. The eddy covariance technique was used to quantify GHG budgets and N2O emis-sion factors (EF) for pea and maize in Switzerland. The random forest technique was applied for gap-filling N2O and CH4 fluxes as well as to determine the relevance of environmental, vegetation vs. management drivers of the GHG fluxes during two cropping seasons. Environmental (i.e., net radiation, soil water content, soil temperature) and veg-etation drivers (i.e., vegetation height) were more important drivers for GHG fluxes at field scale than time since man-agement for the two crop species. Both crops acted as GHG sinks between sowing and harvest, clearly dominated by net CO2 fluxes, while CH4 emissions were negligible. However, considerable N2O emissions occurred in both crop fields early in the season when crops were still establishing. N2O fluxes in both crops were small later in the season when vegetation was tall, despite high soil water contents and temperatures. Results clearly show a strong and highly dynamic microbial-plant competition for N driving N2O fluxes at the field scale. The total loss was 1.4 kg N2O-N ha-1 over 55 days for pea and 4.8 kg N2O-N ha-1 over 127 days for maize. EFs of N2O were 1.5 % (pea) and 4.4 % (maize) during the cropping seasons, clearly exceeding the IPCC Tier 1 EF for N2O. Thus, sustainable, climate-smart agriculture needs to consider crop phenology and better adapt N supply to crop N demand for growth, particularly during the early cropping season when competition for N between establishing crops and soil microorganisms modulates N2O losses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据