4.7 Article

Structural Correlation-based Outlier Rejection (SCORE) algorithm for arterial spin labeling time series

期刊

JOURNAL OF MAGNETIC RESONANCE IMAGING
卷 45, 期 6, 页码 1786-1797

出版社

WILEY
DOI: 10.1002/jmri.25436

关键词

-

资金

  1. National Institutes of Health [R01MH080729, P41 EB015893, P30 NS045839]
  2. Alzheimer's Disease Neuroimaging Initiative (ADNI) (NIH) [U01 AG024904]
  3. Department of Defense (DOD) ADNI [W81XWH-12-2-0012]
  4. National Institute on Aging
  5. National Institute of Biomedical Imaging and Bioengineering
  6. AbbVie
  7. Alzheimer's Association
  8. Alzheimer's Drug Discovery Foundation
  9. Araclon Biotech
  10. BioClinica, Inc.
  11. Biogen
  12. Bristol-Myers Squibb Company
  13. CereSpir, Inc.
  14. Eisai Inc.
  15. Elan Pharmaceuticals, Inc.
  16. Eli Lilly and Company
  17. EuroImmun
  18. F. Hoffmann-La Roche Ltd.
  19. Genentech, Inc.
  20. Fujirebio
  21. GE Healthcare
  22. IXICO Ltd.
  23. Janssen Alzheimer Immunotherapy Research & Development, LLC.
  24. Johnson & Johnson Pharmaceutical Research & Development LLC.
  25. Lumosity
  26. Lundbeck
  27. Merck Co., Inc.
  28. Meso Scale Diagnostics, LLC.
  29. NeuroRx Research
  30. Neurotrack Technologies
  31. Novartis Pharmaceuticals Corporation
  32. Pfizer Inc.
  33. Piramal Imaging
  34. Servier
  35. Takeda Pharmaceutical Company
  36. Transition Therapeutics
  37. Canadian Institutes of Health Research

向作者/读者索取更多资源

PurposeTo propose and validate Structural Correlation-based Outlier REjection (SCORE), a novel algorithm for removal of artifacts arising from outlier control-label pairs in 2D arterial spin labeling (ASL) data. Materials and MethodsThe proposed method was assessed with respect to other state-of-the-art ASL signal processing approaches using 2D pulsed ASL data obtained with a 3T Siemens scanner from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Longitudinal data from control participants acquired 3 months apart were used to assess within-subject coefficient of variation (wsCV) based on the assumption that the optimal signal processing strategy will minimize control subject retest variability in Cerebral Blood Flow (CBF). SCORE was further evaluated by determining its sensitivity for distinguishing patients with Alzheimer's disease (AD) from controls based on hypoperfusion in predefined regions of interest (ROIs) that are known to be sensitive to AD-related changes. ResultsSCORE coupled with a preprocessing step to discard a few extreme outliers (combined algorithm referred to as SCORE+) reduced wsCV up to 21% in gray matter and 39% in smaller ROIs compared to the reference algorithms. It also provided an average increase in effect size for patient-control differences of 50% compared to other algorithms in a priori ROIs sensitive to AD-related changes. This increase was statistically significant (P < 0.05) for the majority of the ROIs and methods as evaluated by permutation tests. ConclusionCBF maps generated with SCORE or SCORE+provide improved retest reliability in control subjects while simultaneously increasing sensitivity to pathological CBF effects between controls and patients. J. Magn. Reson. Imaging 2016

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据