4.7 Article

Enabling lower temperature pyrolysis with aqueous ionic liquid pretreatment as a sustainable approach to rice husk conversion to biofuels

期刊

RENEWABLE ENERGY
卷 198, 期 -, 页码 712-722

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2022.08.077

关键词

Pyrolysis; Rice husk; Pretreatment; Lignin depolymerization; Ionic liquid

资金

  1. China Scholarship Council [201801830363]
  2. National Natural Science Foundation of China [51904272]
  3. Key Research Project of Colleges and Universities in Henan Province [22A530007]
  4. Eppley Foundation for Research
  5. Program of Processing and Efficient Utilization of Biomass Resources of Henan Center for Outstanding Overseas Scientists [GZS2022007]

向作者/读者索取更多资源

This study investigates the use of aqueous [Bmim][OAc] for pretreatment of rice husk to lower the pyrolysis temperature and increase the yield and energy content of bio-oil. The pretreated rice husk showed enhanced mass yield and energy yield compared to untreated husk, with enriched desired components. The pretreatment process was found to expand the cellulose I lattice and contribute to the transformation of crystalline cellulose I to amorphous chains in rice husk, leading to the reduction in pyrolysis temperature. The recovery of [Bmim][OAc] using a potassium phosphate solution was also demonstrated. These findings provide new insights for achieving higher energy conversion efficiency from lignocellulosic biomass pyrolysis. Rating: 7.5/10
Pyrolytic conversions of biomass-to-biofuels require relatively high temperatures concerning the low energy yield of resulting biofuels. This work uses aqueous [Bmim][OAc] for pretreatment to lower the peak pyrolysis temperature of rice husk. The mass yield of bio-oil from low temperature pyrolysis (335 degrees C) of pretreated rice husk was enhanced by 20.28%, and the energy yield of pyrolysis for bio-oil production increased by 17.65% with pretreatment. The bio-oils obtained from pretreated rice husk were enriched in desired components such as furfural, furanone and cyclopentenones, but reduced in alcohols, phenolic derivatives and phenylfuran versus the raw rice husk. The [Bmim][OAc] pretreatment expands the cellulose I lattice and contributes to the transformation of crystalline cellulose I to amorphous chains in rice husk. The beta-O-4 arylether bond cleavage in lignin and the damage of original hydrogen bonds in cellulose and hemicellulose are responsible for lowering the pyrolysis temperature and average activation energy of pyrolysis. Up to 90% of [Bmim][OAc] was recovered using a 45.0 wt% K3PO4 solution and demonstrated similar effectiveness on a second batch of pretreatment. The results provide new insight into achieving higher energy conversion efficiency from lignocellulosic biomass pyrolysis with lower energy consumption for the sustainable development goals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据