4.7 Article

Semi-automatic detection and segmentation of wooden pellet size exploiting a deep learning approach

期刊

RENEWABLE ENERGY
卷 197, 期 -, 页码 406-416

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.renene.2022.07.109

关键词

Pellet size; Biomass; Deep learning; Object detection; Climate change

向作者/读者索取更多资源

The production of wood pellets was developed to manage residual sawdust from wood processing. The geometric-dimensional aspects of pellets are important for density, energy density, and thermal capacity. However, the current measurement method is time-consuming and less accurate, so there is a need to use deep neural networks for measuring pellet dimensions.
The production of wood pellets was born as a response to the need to manage the residual sawdust of wood processing. Nowadays, the standard UNE EN ISO 17225-2:2021 determine the general requirements of the fuel specifications and their classes. Among these, the length of the pellet plays an important role in defining its behaviour in different contexts, starting from the way the spaces are occupied both in static (storage) and dynamic (feeding) conditions. The geometric-dimensional aspects of pellets are of particular importance for the density, the energy density, and the effective thermal capacity of thermal plants, affecting also the flowability. Despite the extreme importance of such parameters, the pellet measurement is carried out using a precision caliper on a group of individual pellets taken from laboratory samples. This method is time-consuming and returns dimensional values in very small quantities, raising the issue of sample representativeness. Considering the impact of the quality parameters, it is important to examine alternative solutions. In this light, this work has the task of testing and verifying the efficiency of a system that uses a deep neural network, to determine the geometric-dimensional parameters of wood pellets. Thus, the implemented system detects, segments, and determines the dimensions of wood pellets in a bunch. This problem is not trivial, due to the irregular lighting conditions that affect the quality of the images and the overlapping of the wood pellets. To evaluate the performance of the deep neural network approach, several experiments have been carried out, in different lighting conditions and for validation purposes, we considered also PVC pellets, which have a known and fixed dimension. The comparison between real environment data and the validation set, despite a slight tendency towards underestimation in length, shows great performances in terms of RMSE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据