4.3 Article

Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/10601325.2017.1250311

关键词

3D printing; fused deposition modeling; graphene; poly(lactic acid)

向作者/读者索取更多资源

In this work, three-dimensional (3D) printing system based on fused deposition modeling (FDM) is used for the fabrication of conductive polymer nanocomposites. This technology consists in the additive multilayer deposition of polymeric nanocomposite based on poly(lactic acid) (PLA) and graphene by means of a in house made low-cost commercial bench-top 3D printer. Further, 3D printed PLA/graphene nanocomposites containing 10wt% graphene in PLA matrix were characterized for their mechanical, electrical and electromagnetic induction shielding properties of the nanocomposite. Furthermore X-ray computed micro-tomography analyses showed that printed samples have good dimensional accuracy and are significantly closer to the predefined design and the results of scanning electron microscopy (SEM) printed samples showed a uniform dispersion of graphene in PLA matrix The proposed material has uniquely advantageous when implemented in 3D printed structures, because incorporation of multifunctional graphene has been shown to substantially improve the properties of the resulting nanocomposite.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据