4.3 Article

A sequence-based foldability score combined with AlphaFold2 predictions to disentangle the protein order/disorder continuum

期刊

出版社

WILEY
DOI: 10.1002/prot.26441

关键词

AlphaFold protein structure database; hydrophobic cluster analysis; IDPs; IDRs; protein foldable segments; soluble and transmembrane domains

向作者/读者索取更多资源

Order and disorder play important roles in protein functions, but the diversity of disorder makes it difficult to understand. Researchers developed an analytical tool called pyHCA, which estimates the foldability of a protein segment based on its amino acid sequence and the density of regular secondary structures associated with hydrophobic clusters. They applied pyHCA to protein sequences from various species and compared the results with AlphaFold2, providing guidance for mapping structural innovations at proteome and gene scales.
Order and disorder govern protein functions, but there is a great diversity in disorder, from regions that are-and stay-fully disordered to conditional order. This diversity is still difficult to decipher even though it is encoded in the amino acid sequences. Here, we developed an analytic Python package, named pyHCA, to estimate the foldability of a protein segment from the only information of its amino acid sequence and based on a measure of its density in regular secondary structures associated with hydrophobic clusters, as defined by the hydrophobic cluster analysis (HCA) approach. The tool was designed by optimizing the separation between foldable segments from databases of disorder (DisProt) and order (SCOPe [soluble domains] and OPM [transmembrane domains]). It allows to specify the ratio between order, embodied by regular secondary structures (either participating in the hydrophobic core of well-folded 3D structures or conditionally formed in intrinsically disordered regions) and disorder. We illustrated the relevance of pyHCA with several examples and applied it to the sequences of the proteomes of 21 species ranging from prokaryotes and archaea to unicellular and multicellular eukaryotes, for which structure models are provided in the AlphaFold protein structure database. Cases of low-confidence scores related to disorder were distinguished from those of sequences that we identified as foldable but are still excluded from accurate modeling by AlphaFold2 due to a lack of sequence homologs or to compositional biases. Overall, our approach is complementary to AlphaFold2, providing guides to map structural innovations through evolutionary processes, at proteome and gene scales.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据