4.8 Article

Oxygen regulation of breathing is abolished in mitochondrial complex III-deficient arterial chemoreceptors

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.2202178119

关键词

acute O-2 sensing; hypoxia; carotid body glomus cell; mitochondrial O-2 sensing and signaling; mitochondrial complex III

资金

  1. Andalusian Government [US-1255654]
  2. Spanish Ministries of Science and Innovation and Health - MCIN/AEI [SAF2016-74990-R, PID2019-106410RB-I00]
  3. European Research Council [PRJ201502629]
  4. Spanish Government

向作者/读者索取更多资源

Acute oxygen sensing is crucial for adapting to hypoxic environments or medical conditions with restricted gas exchange. The carotid body plays a main role in this process, with Glomus cells in the body's response to low oxygen levels. These cells have specialized mitochondrial properties that are essential for sensing hypoxia and regulating breathing.
Acute oxygen (O-2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O-2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O-2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O-2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O-2 sensing. O-2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据