4.5 Article

PVC/PMMA blend ultrafiltration membranes for oil-in-water emulsion separation

期刊

POLYMER BULLETIN
卷 80, 期 8, 页码 9275-9295

出版社

SPRINGER
DOI: 10.1007/s00289-022-04514-6

关键词

PVC; PMMA; Membrane; Ultrafiltration; Oily wastewater

向作者/读者索取更多资源

PVC/PMMA blend membranes were prepared and their properties were evaluated. The increase in PMMA content led to an increase in surface pore number and hydrophilicity of the membranes. In addition, the blend membranes exhibited higher turbidity removal efficiency and lower flux decline during the filtration process.
Polyvinylchloride (PVC)/poly(methyl methacrylate) (PMMA) blend membranes were prepared via the non-solvent-induced phase separation method to separate oil-in-water emulsion in a laboratory-scale cross-flow system. Free radical polymerization of methyl methacrylate was used to synthesize PMMA. The fabricated membranes were evaluated using a set of techniques including field emission scanning electron microscope (FESEM), thermogravimetric analysis (TGA), atomic force microscopy, pure water flux, contact angle, and pore size distribution. The FESEM results showed that with the increase of PMMA content in the casting solution, larger macro-voids in the porous substructure have appeared, surface pores of the membranes shifted toward smaller pores, and the number of surface pores of the membranes increased. Moreover, pure water flux was increased from 157.75 L m(-2) h(-1) for pure PVC membrane to 1036.25 L m(-2) h(-1) for 0.08 wt.% PMMA blend membrane because the hydrophilicity as well as the number of pores on the surface of 0.08 wt.% PMMA was higher than that of pure PVC membrane. In addition, the results of TGA analysis revealed that the degradation temperatures shifted toward higher temperatures as the PMMA content increased. Finally, the filtration of synthetic oily wastewater was performed to evaluate membrane performances, and it was revealed that PVC/PMMA blend membranes exhibited higher turbidity removal efficiency and lower flux decline during the filtration process. This indicates that the fouling resistance properties of blend membranes improved because of the presence of PMMA and its hydrophilic effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据