4.6 Article

High throughput embryonic zebrafish test with automated dechorionation to evaluate nanomaterial toxicity

期刊

PLOS ONE
卷 17, 期 9, 页码 -

出版社

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pone.0274011

关键词

-

资金

  1. United States Army Medical Research and Development Command through the Military Operational Medicine Research Program

向作者/读者索取更多资源

Engineered nanomaterials with unique properties may pose health and environmental concerns. A study using zebrafish PMR test for toxicity evaluation, along with automated dechorionation, showed improved bioavailability of nanomaterials. Behavioral and toxicological responses were measured at 30-31 hours and 120 hours, revealing behavioral responses for 13 nanomaterials and acute toxicity levels below the maximum test concentration for 9 nanomaterials.
Engineered nanomaterials pose occupational health and environmental concerns as they possess unique physical and chemical properties that can contribute to toxicity. High throughput toxicity screening methods are needed to address the increasing number of nanomaterials in production. Here we used a zebrafish photomotor response (PMR) test to evaluate a set of fifteen nanomaterials with military relevance. Automated dechorionation of zebrafish embryos was used to enhance nanomaterials bioavailability. Optimal PMR activity in zebrafish embryos was found at 30-31 hours post-fertilization (hpf). Behavioral and toxicological responses were measured at 30 and 120 hpf; behavioral responses were found for thirteen of the fifteen nanomaterials and acute toxicity (LC50) levels for nine of the fifteen nanomaterials below the maximum test concentration of 500 mu g/ml. Physico-chemical characterization of the nanomaterials detected endotoxin and bacterial contamination in two of the tested samples, which may have contributed to observed toxicity and reinforces the need for physical and chemical characterization of nanomaterials use in toxicity testing. The zebrafish PMR test, together with automated dechorionation, provides an initial rapid assessment of the behavioral effects and toxicity of engineered nanomaterials that can be followed up by physico-chemical characterization if toxicity is detected, reducing the amount of time and monetary constraints of physico-chemical testing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据