4.7 Article

Fructus ligustri lucidi suppresses inflammation and restores the microbiome profile in murine colitis models

期刊

PHYTOMEDICINE
卷 106, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.phymed.2022.154438

关键词

Ulcerative colitis; Fructus ligustri lucidi; Macrophages; Microbiota; Inflammation; Colitis-associated cancer

资金

  1. National Natural Science Founda-tion of China
  2. Scientific Project Foundation of Jining Medical University
  3. myocardial infarction innovative team at Jining medical university
  4. [31801172]
  5. [JYGC2021KJ003]

向作者/读者索取更多资源

FLL is a potent anti-colitis drug by suppressing inflammation and rescuing dysbiosis.
Background: Ulcerative colitis (UC) is pathologically characterized by an inappropriate immune response to the gut commensal microbes accompanied by persistent epithelial barrier dysfunction, and its progression increases the susceptibility to colitis-associated cancer (CAC), as well as other complications. Fructus ligustri lucidi (FLL) has a long historical application in traditional Chinese medicine due to its various pharmacological effects, including antioxidation and anti-inflammation. The present study aimed to explore the molecular and cellular mechanisms of FLL in treating colitis. Methods: A high-performance liquid chromatography (HPLC) combined with ultraviolet (UV) was performed to validate the quality of FLL; Network pharmacology analysis and weighted gene co-expression network analysis (WGCNA) based on The Cancer Genome Atlas (TCGA) database predicted the therapeutic value of FLL against UC and CAC; 2% dextran sodium sulfate (DSS) was administered to mice to establish murine models of experimental colitis, and FLL was given for the next 14 days at different concentrations; 16S rRNA sequencing and untargeted metabolomics were performed on fecal samples to delineate the alteration in microbiome profile; Western blotting, flow cytometry, and immunocytochemistry experiments were conducted to confirm the predicted cellular mechanisms. Results: Network pharmacology analysis and WGCNA predicted that the targets of the FLL were associated with the progression of UC and the survival of patients with colorectal cancer by regulating tumor necrosis factor (TNF) and IL-17 signaling pathways, immune cell functions, responses to bacterial and reactive oxygen species (ROS), and cell proliferation. In vivo experiments corroborated that the high dose of FLL significantly attenuated the progression of experimental colitis by reversing the weight loss and bloody stool, reconstructing the integrity of colorectal epithelium, and suppressing the concentration of pro-inflammatory cytokines. Moreover, FLL treatment reduced the transition of macrophages (M phi s) to the proinflammatory phenotype and promoted M phi s-regulated wound healing, and suppressed the production of ROS in intestinal organoids (IOs) and crypts. 16S rRNA and untargeted metabolomics showed that the administration of FLL inhibited DSS-caused colonization of the potentially pathogenic gut microorganisms and reversed DSS-influenced metabolic profile. Conclusion: FLL is a potent anti-colitis drug by suppressing inflammation and rescuing dysbiosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据