4.7 Review

Length control of long cell protrusions: Rulers, timers and transport

期刊

出版社

ELSEVIER
DOI: 10.1016/j.physrep.2022.08.002

关键词

Subcellular length control; Cilia; Intraflagellar transport (IFT); IFT trains; Time of flight; Resorption; Regeneration; Non-flagellar cell protrusions

向作者/读者索取更多资源

This review examines the transport logistics and mechanisms of length control of cell protrusions, as well as coordination among multiple appendages. A case study on the eukaryotic flagellum is presented, showcasing the extensively studied flagellar length control mechanisms. Brief discussions on non-flagellar cell protrusions provide a glimpse into the challenging frontiers of research on subcellular length control phenomena.
Living cells use long tubular appendages for locomotion and sensory purposes. Hence, assembling and maintaining a protrusion of correct length is crucial for survival and overall performance. Usually the protrusions lack the machinery for the synthesis of building blocks and imports them from the cell body. What are the unique features of the transport logistics which facilitate the exchange of these building blocks between the cell and the protrusion? What kind of 'rulers' and 'timers' does the cell use for constructing its appendages of correct length on time? How do the multiple appendages coordinate and communicate among themselves during different stages of their existence? How frequently do the fluctuations drive the length of these dynamic protrusions out of the acceptable bounds? These questions are addressed from a broad perspective in this review which is organized in three parts. In part-I the list of all known cell protrusions is followed by a comprehensive list of the mechanisms of length control of cell protrusions reported in the literature. We review not only the dynamics of the genesis of the protrusions, but also their resorption and regrowth as well as regeneration after amputation. As a case study in part-II, the specific cell protrusion that has been discussed in detail is eukaryotic flagellum (also known as cilium); this choice was dictated by the fact that flagellar length control mechanisms have been studied most extensively over more than half a century in cells with two or more flagella. Although limited in scope, brief discussions on a few non-flagellar cell protrusions in part-III of this review is intended to provide a glimpse of the uncharted territories and challenging frontiers of research on subcellular length control phenomena that awaits rigorous investigations.(c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据