4.7 Article

Relative permeability as a stationary process: Energy fluctuations in immiscible displacement

期刊

PHYSICS OF FLUIDS
卷 34, 期 9, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0107149

关键词

-

资金

  1. Office of Science of the U.S. Department of Energy [DE-AC05-00OR22725]
  2. Australian Research Council Future Fellowship [FT210100165]
  3. Australian Research Council [FT210100165] Funding Source: Australian Research Council

向作者/读者索取更多资源

Relative permeability is derived from conservation of energy and used to model fluid flow through porous materials. The study finds dynamic connectivity and explores the distribution of energy fluctuations during steady-state flow. It demonstrates the effectiveness of the conventional relative permeability relationship in simulating energy dissipation in systems with complex pore-scale dynamics.
Relative permeability is commonly used to model immiscible fluid flow through porous materials. In this work, we derive the relative permeability relationship from conservation of energy, assuming that the system to be non-ergodic at large length scales and relying on aver-aging in both space and time to homogenize the behavior. Explicit criteria are obtained to define stationary conditions: (1) there can be no net change for extensive measures of the system state over the time averaging interval; (2) the net energy inputs into the system are zero, meaning that the net rate of work done on the system must balance with the heat removed; and (3) there is no net work performed due to the contribution of internal energy fluctuations. Results are then evaluated based on direct numerical simulation. Dynamic connectivity is observed during steady-state flow, which is quantitatively assessed based the Euler characteristic. We show that even during steady-state flow at low capillary number (Ca similar to 1 x 10(-5)), typical flow processes will explore multiple connectivity states. The residence time for each connectivity state is captured based on the time-and-space average. The distribution for energy fluctuations is shown to be multi-modal and non-Gaussian when terms are considered independently. However, we demonstrate that their sum is zero. Given an appropriate choice of the thermodynamic driving force, we show that the conventional relative permeability relationship is sufficient to model the energy dissipation in systems with complex pore-scale dynamics that routinely alter the structure of fluid connected pathways. Published under an exclusive license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据