4.6 Article

Strong optical coupling in metallo-dielectric hybrid metasurfaces

期刊

OPTICS EXPRESS
卷 30, 期 23, 页码 42512-42524

出版社

Optica Publishing Group
DOI: 10.1364/OE.473358

关键词

-

类别

资金

  1. Swedish Research Council -Vetenskapsradet [2019-05321]
  2. Swedish Research Council [2019-05321] Funding Source: Swedish Research Council

向作者/读者索取更多资源

Hybrid metal/dielectric nanostructures in metasurfaces offer advantages such as confining electromagnetic fields in subwavelength regions and reducing absorption losses. The presented metallodielectric hybrid metasurface design demonstrates the excitation of anapole states and surface plasmon polaritons, allowing for strong light-matter interactions. This design shows promise for open cavity optical systems operating at room temperatures.
Metasurfaces consisting of hybrid metal/dielectric nanostructures carry advantages of both material platforms. The hybrid structures can not only confine electromagnetic fields in subwavelength regions, but they may also lower the absorption losses. Such optical characteristics are difficult to realize in metamaterials with only metal or dielectric structures. Hybrid designs also expand the scope of material choices and the types of optical modes that can be excited in a metasurface, thereby allowing novel light matter interactions. Here, we present a metallodielectric hybrid metasurface design consisting of a high-index dielectric (silicon) nanodisk array on top of a metal layer (aluminum) separated by a buffer oxide (silica) layer. The dimensions of Si nanodisks are tuned to support anapole states and the period of the nanodisk array is designed to excite surface plasmon polariton (SPP) at the metal-buffer oxide interface. The physical dimensions of the Si nanodisk and the array periods are optimized to excite the anapole and the SPP at normal incidence of light in the visible-NIR (400-900 nm) wavelength range. Finite difference time domain (FDTD) simulations show that, when the nanodisk grating is placed at a specific height (similar to 200 nm) from the metal surface, the two modes strongly couple at zero detuning of the resonances. The strong coupling is evident from the avoided crossing of the modes observed in the reflectance spectra and in the spectral profile of light absorption inside the Si nanodisk. A vacuum Rabi splitting of up to similar to 129 meV is achievable by optimizing the diameters of Si nanodisk and the nanodisk array grating period. The proposed metasurface design is promising to realize open cavity strongly coupled optical systems operating at room temperatures. Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据