4.5 Article

Development of full electromagnetic plasma burn-through model and validation in MAST

期刊

NUCLEAR FUSION
卷 62, 期 12, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-4326/ac9194

关键词

DYON; burn-through; break-down; Townsend; start-up

资金

  1. European Union via the Euratom Research and Training Programme [101052200-EUROfusion]
  2. EPSRC [EP/W006839/1]
  3. Brain Korea 21 FOUR Program [4199990314119]

向作者/读者索取更多资源

The paper presents an improved electromagnetic plasma burn-through model, which accurately calculates the time-evolving parameters of plasma based on control room operation signals, showing a reasonable level of agreement with experimental measurement.
This paper describes the improvement of the electromagnetic plasma burn-through model. Full circuit equations describing the currents in solenoid, poloidal field coils, and toroidally conducting passive structures have been integrated into the differential equation system of the plasma energy and particle balances in DYON. This enables consistent calculation of the time-evolving loop voltage at a plasma position only using operation signals in a control room, which are current (or voltage) waveforms in solenoid and poloidal field coils and prefill gas pressure. The synthetic flux loop data calculated in the modelling agrees well with the measurement in MAST, confirming the validity of the loop voltage calculation. The electromagnetic modelling also enables calculation of 2D time-evolving poloidal magnetic flux map, thereby modelling the plasma volume evolution during the plasma break-down and burn-through phase. Only using the control room operation signals used in 34 ohmic start-up discharges with the direct induction start-up scenario in MAST, the electromagnetic plasma burn-through modelling has reproduced the time-evolution of plasma current, electron density and temperature, and plasma volume, showing a reasonable level of agreement with experimental measurement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据