4.4 Article Proceedings Paper

Thermomechanical analysis of the formation of hot cracks in remote laser welded aluminium fillet welds

期刊

JOURNAL OF LASER APPLICATIONS
卷 28, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.2351/1.4944093

关键词

hot cracks; aluminium; fillet weld; strain; strain rate

向作者/读者索取更多资源

Remote laser welding of high strength aluminum alloys is still a field of extensive research due to the hot cracking phenomena. Recent research activities have been focused on center-line hot cracks in welds that are located close to the edge of the material. To avoid this type of crack from occurring, a fillet weld joint design could be utilized. However, within the fillet welds there are still transverse hot cracks present on a microscopic scale. This paper presents a thermomechanical analysis of the formation of transverse hot cracks in EN AW-6082 alloy fillet welds. In order to calculate the local deformation near the mush zone, a welding simulation based on the finite element method was created. The simulation was able to depict different settings for the welding speed, laser power, beam position, protruding length of the lower sheet, and the sheet thickness. For this purpose, an automated method for heat source calibration was developed based on image processing of polish of cross sections of different weld seams. As a result, it was possible to investigate the influencing factors on the formation of local strain and strain rate during the hot crack sensitive temperature range. It was found that the welding speed and laser power significantly increased the strain rate, but had no effect on the strain. In addition, it was determined that the position of the laser beam caused a major difference in the formation of strain and strain rate if weld seams changed from partial penetration to full penetration. Full penetration welds had lower strain and strain rate. The protruding length of the lower sheet and the sheet thickness had a minor impact on strain and strain rate. By linking the computerized results of strain and strain rate with data obtained from experiments on the hot crack susceptibility, a hot cracking criteria based on strain rate was found. (C) 2016 Laser Institute of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据