4.8 Article

cIAP1-based degraders induce degradation via branched ubiquitin architectures

期刊

NATURE CHEMICAL BIOLOGY
卷 19, 期 3, 页码 311-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41589-022-01178-1

关键词

-

向作者/读者索取更多资源

Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is a new concept in precision medicine. This study reveals the importance of K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrates the diversity of the ubiquitin code used for chemical hijacking.
Targeted protein degradation through chemical hijacking of E3 ubiquitin ligases is an emerging concept in precision medicine. The ubiquitin code is a critical determinant of the fate of substrates. Although two E3s, CRL2(VHL) and CRL4(CRBN), frequently assemble with proteolysis-targeting chimeras (PROTACs) to attach lysine-48 (K48)-linked ubiquitin chains, the diversity of the ubiquitin code used for chemically induced degradation is largely unknown. Here we show that the efficacy of cIAP1-targeting degraders depends on the K63-specific E2 enzyme UBE2N. UBE2N promotes degradation of cIAP1 induced by cIAP1 ligands and subsequent cancer cell apoptosis. Mechanistically, UBE2N-catalyzed K63-linked ubiquitin chains facilitate assembly of highly complex K48/K63 and K11/K48 branched ubiquitin chains, thereby recruiting p97/VCP, UCH37 and the proteasome. Degradation of neo-substrates directed by cIAP1-recruiting PROTACs also depends on UBE2N. These results reveal an unexpected role for K63-linked ubiquitin chains and UBE2N in degrader-induced proteasomal degradation and demonstrate the diversity of the ubiquitin code used for chemical hijacking.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据