4.8 Article

Structure of the Ebola virus polymerase complex

期刊

NATURE
卷 610, 期 7931, 页码 394-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05271-2

关键词

-

资金

  1. National Key Research and Development Program of China [2021YFC2300700]
  2. Strategic Priority Research Program of CAS [XDB29010000]
  3. National Natural Science Foundation of China (NSFC) [81871658, 32192452, 32100119]
  4. Youth Innovation Promotion Association of CAS [Y201921]

向作者/读者索取更多资源

Filoviruses, including Ebola virus, pose an increasing threat to public health. The structure of the Ebola virus L protein in complex with VP35 has been determined, revealing potential targets for anti-filovirus drugs. Additionally, suramin has been found to inhibit the activity of the Ebola virus polymerase.
Filoviruses, including Ebola virus, pose an increasing threat to the public health. Although two therapeutic monoclonal antibodies have been approved to treat the Ebola virus disease(1,2), there are no approved broadly reactive drugs to control diverse filovirus infection. Filovirus has a large polymerase (L) protein and the cofactor viral protein 35 (VP35), which constitute the basic functional unit responsible for virus genome RNA synthesis(3). Owing to its conservation, the L-VP35 polymerase complex is a promising target for broadly reactive antiviral drugs. Here we determined the structure of Ebola virus L protein in complex with tetrameric VP35 using cryo-electron microscopy (state 1). Structural analysis revealed that Ebola virus L possesses a filovirus-specific insertion element that is essential for RNA synthesis, and that VP35 interacts extensively with the N-terminal region of L by three protomers of the VP35 tetramer. Notably, we captured the complex structure in a second conformation with the unambiguous priming loop and supporting helix away from polymerase active site (state 2). Moreover, we demonstrated that the century-old drug suramin could inhibit the activity of the Ebola virus polymerase in an enzymatic assay. The structure of the L-VP35-suramin complex reveals that suramin can bind at the highly conserved NTP entry channel to prevent substrates from entering the active site. These findings reveal the mechanism of Ebola virus replication and may guide the development of more powerful anti-filovirus drugs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据