4.8 Article

Bending forces and nucleotide state jointly regulate F-actin structure

期刊

NATURE
卷 611, 期 7935, 页码 380-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05366-w

关键词

-

资金

  1. National Institutes of Health [R01GM141044]
  2. Irma T. Hirschl and Monique Weill-Caulier Research Award
  3. Pew Biomedical Scholar Award
  4. H. Li Memorial Fellowship
  5. NIH [T32 GM115327]

向作者/读者索取更多资源

ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation. This study reveals that the nucleotide state of actin can modulate the structural transitions of F-actin induced by bending forces, which further affects the mechanical regulation of actin.
ATP-hydrolysis-coupled actin polymerization is a fundamental mechanism of cellular force generation(1-3). In turn, force(4,5) and actin filament (F-actin) nucleotide state(6) regulate actin dynamics by tuning F-actin's engagement of actin-binding proteins through mechanisms that are unclear. Here we show that the nucleotide state of actin modulates F-actin structural transitions evoked by bending forces. Cryo-electron microscopy structures of ADP-F-actin and ADP-P-i-F-actin with sufficient resolution to visualize bound solvent reveal intersubunit interfaces bridged by water molecules that could mediate filament lattice flexibility. Despite extensive ordered solvent differences in the nucleotide cleft, these structures feature nearly identical lattices and essentially indistinguishable protein backbone conformations that are unlikely to be discriminable by actin-binding proteins. We next introduce a machine-learning-enabled pipeline for reconstructing bent filaments, enabling us to visualize both continuous structural variability and side-chain-level detail. Bent F-actin structures reveal rearrangements at intersubunit interfaces characterized by substantial alterations of helical twist and deformations in individual protomers, transitions that are distinct in ADP-F-actin and ADP-P-i-F-actin. This suggests that phosphate rigidifies actin subunits to alter the bending structural landscape of F-actin. As bending forces evoke nucleotide-state dependent conformational transitions of sufficient magnitude to be detected by actin-binding proteins, we propose that actin nucleotide state can serve as a co-regulator of F-actin mechanical regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据