4.8 Article

Identification of carbon dioxide in an exoplanet atmosphere

期刊

NATURE
卷 614, 期 7949, 页码 649-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41586-022-05269-w

关键词

-

向作者/读者索取更多资源

This article reports the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b using observations from JWST, as well as the discovery of other potential absorption features.
Carbon dioxide (CO2) is a key chemical species that is found in a wide range of planetary atmospheres. In the context of exoplanets, CO2 is an indicator of the metal enrichment (that is, elements heavier than helium, also called 'metallicity')(1-3), and thus the formation processes of the primary atmospheres of hot gas giants(4-6). It is also one of the most promising species to detect in the secondary atmospheres of terrestrial exoplanets(7-9). Previous photometric measurements of transiting planets with the Spitzer Space Telescope have given hints of the presence of CO2, but have not yielded definitive detections owing to the lack of unambiguous spectroscopic identification(10-12). Here we present the detection of CO2 in the atmosphere of the gas giant exoplanet WASP-39b from transmission spectroscopy observations obtained with JWST as part of the Early Release Science programme(13,14). The data used in this study span 3.0-5.5micrometres in wavelength and show a prominent CO2 absorption feature at 4.3micrometres (26-sigma significance). The overall spectrum is well matched by one-dimensional, ten-times solar metallicity models that assume radiative-convective-thermochemical equilibrium and have moderate cloud opacity. These models predict that the atmosphere should have water, carbon monoxide and hydrogen sulfide in addition to CO2, but little methane. Furthermore, we also tentatively detect a small absorption feature near 4.0micrometres that is not reproduced by these models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据