4.8 Article

Regulating electronic structure of porous nickel nitride nanosheet arrays by cerium doping for energy-saving hydrogen production coupling hydrazine oxidation

相关参考文献

注意:仅列出部分参考文献,下载原文获取全部文献信息。
Review Chemistry, Physical

Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions

Jingqi Guan et al.

Summary: The review explores feasible design strategies for fabricating carbon-free single-site catalysts for hydrogen and oxygen evolution reactions, detailing the constitutive relationships between structure, composition, and catalytic performance. Insights are provided for constructing high-performance electrocatalysts for HER and OER, with future research directions and challenges in single-site catalysts for electrochemical water splitting suggested.

NANO RESEARCH (2022)

Article Engineering, Environmental

Hierarchical Ni3N/Ni0.2Mo0.8N heterostructure nanorods arrays as efficient electrocatalysts for overall water and urea electrolysis

Rui-Qing Li et al.

Summary: The new Ni3N/Ni0.2Mo0.8N/NF catalyst demonstrates multifunctional superior performance for overall water and urea electrolysis, requiring low overpotentials and ultrasmall potentials for hydrogen generation.

CHEMICAL ENGINEERING JOURNAL (2021)

Article Chemistry, Physical

Construction of hierarchical FeNi3@(Fe,Ni)S2 core-shell heterojunctions for advanced oxygen evolution

Minglei Yan et al.

Summary: In this study, a porous core-shell heterojunction NiFe sulfide catalyst was demonstrated for efficient water electrolysis, showing excellent performance with low overpotential, small Tafel slope, and high durability. The construction of advanced earth-abundant OER electrocatalysts through heterojunctions between metal and corresponding metal-compounds via post treatments provides an effective way for further exploration in this field.

NANO RESEARCH (2021)

Article Chemistry, Physical

Highly active bifunctional catalyst: Constructing FeWO4-WO3 heterostructure for water and hydrazine oxidation at large current density

Fang Shen et al.

Summary: The study successfully synthesized FeWO4-WO3/NF catalyst, which exhibited good catalytic activity and stability in OER and HzOR reactions, possibly due to the effects of its wolframite structure and heterostructure on enhancing electronic transfer and stability.

NANO RESEARCH (2021)

Article Chemistry, Physical

Interface engineering and heterometal doping Mo-NiS/Ni(OH)2 for overall water splitting

Hua Zhang et al.

Summary: The Mo-NiS/Ni(OH)(2) electrocatalyst, designed and fabricated by foreign metal doping and interface interaction, demonstrates high catalytic performance and durability for water splitting reactions.

NANO RESEARCH (2021)

Article Multidisciplinary Sciences

Energy-saving hydrogen production by chlorine-free hybrid seawater splitting coupling hydrazine degradation

Fu Sun et al.

Summary: A potential solution to grid-scale production of carbon-neutral hydrogen energy without reliance on freshwater is demonstrated through chlorine-free hydrogen production by hybrid seawater splitting coupling hydrazine degradation. The electrolyzer achieves a high hydrogen production rate at low electricity expense and avoids chlorine electrochemistry in complex chemical environments. By integrating low-voltage direct hydrazine fuel cells or solar cells, self-powered hybrid seawater electrolysis is realized, enabling efficient conversion of ocean resources to hydrogen fuel while removing harmful pollutants.

NATURE COMMUNICATIONS (2021)

Article Chemistry, Physical

3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis

Rui-Qing Li et al.

Summary: In this study, V-doped Ni3N nanosheets arrays grown on nickel foam were developed as a bifunctional electrocatalyst for hydrogen evolution reaction (HER) and urea oxidation reaction (UOR). The catalyst exhibited excellent catalytic performances with low energy consumption and remarkable stability, making it promising for applications in energy-saving H-2 production and urea-related waste water treatment.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Article Chemistry, Physical

Boosting alkaline hydrogen evolution performance of Co4N porous nanowires by interface engineering of CeO2 tuning

Mengjie Lu et al.

Summary: This study developed a high-efficiency catalyst for alkaline HER by combining CeO2 and Co4N, which exhibited superhydrophilic and superaerophobic properties to promote water adsorption/dissociation, resulting in significantly improved performance. The synthesized electrode showed promising potential in mass applications with extraordinary long-time durability.

JOURNAL OF MATERIALS CHEMISTRY A (2021)

Review Chemistry, Multidisciplinary

Recent Advances in Electrocatalytic Hydrogen Evolution Using Nanoparticles

Jing Zhu et al.

CHEMICAL REVIEWS (2020)

Review Chemistry, Multidisciplinary

Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage

Yuxing Yan et al.

ADVANCED MATERIALS (2020)

Article Chemistry, Multidisciplinary

Anodic Hydrazine Oxidation Assists Energy-Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode

Jun-Ye Zhang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2018)

Article Chemistry, Physical

Ultrastable In-Plane 1T-2H MoS2 Heterostructures for Enhanced Hydrogen Evolution Reaction

Shuai Wang et al.

ADVANCED ENERGY MATERIALS (2018)

Article Chemistry, Multidisciplinary

Energy-Saving Electrolytic Hydrogen Generation: Ni2P Nanoarray as a High-Performance Non-Noble-Metal Electrocatalyst

Chun Tang et al.

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION (2017)

Article Chemistry, Multidisciplinary

Defects Engineered Monolayer MoS2 for Improved Hydrogen Evolution Reaction

Gonglan Ye et al.

NANO LETTERS (2016)

Article Chemistry, Physical

Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution

Daqiang Gao et al.

JOURNAL OF MATERIALS CHEMISTRY A (2016)

Article Chemistry, Multidisciplinary

Metallic Nickel Nitride Nanosheets Realizing Enhanced Electrochemical Water Oxidation

Kun Xu et al.

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY (2015)

Article Materials Science, Multidisciplinary

Shape controllable synthesis and multicolour fluorescence of lanthanide doped Vernier yttrium oxyfluoride

Ruiqing Li et al.

JOURNAL OF MATERIALS CHEMISTRY C (2015)

Article Multidisciplinary Sciences

Sustainable hydrogen production

JA Turner

SCIENCE (2004)