4.8 Article

Electric Fields and Charge Separation for Solid Oxide Fuel Cell Electrodes

期刊

NANO LETTERS
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.2c02468

关键词

DFT; SOFC; electric field; surface potential; thermodynamics

资金

  1. Ceres Power Ltd.
  2. EPSRC [EP/R002010/1]
  3. Miller Institute for Basic Research in Science at the University of California, Berkeley

向作者/读者索取更多资源

In this study, the activation losses at solid oxide fuel cell (SOFC) electrodes were investigated by simulating charge transfer using density functional theory (DFT). The electrostatic responses to the electric field were found to correlate with experimental data for different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces. The study also highlighted the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. The findings have potential implications in energy storage and catalysis.
Activation losses at solid oxide fuel cell (SOFC) electrodes have been widely attributed to charge transfer at the electrode surface. The electrostatic nature of electrode-gas interactions allows us to study these phenomena by simulating an electric field across the electrode-gas interface, where we are able to describe the activation overpotential using density functional theory (DFT). The electrostatic responses to the electric field are used to approximate the behavior of an electrode under electrical bias and have found a correlation with experimental data for three different reduction reactions at mixed ionic-electronic conducting (MIEC) electrode surfaces (H2O and CO2 on CeO2; O-2 on LaFeO3). In this work, we demonstrate the importance of decoupled ion-electron transfer and charged adsorbates on the performance of electrodes under nonequilibrium conditions. Finally, our findings on MIEC-gas interactions have potential implications in the fields of energy storage and catalysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据