4.6 Article

Transformation Kinetics of LiBH4-MgH2 for Hydrogen Storage

期刊

MOLECULES
卷 27, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27207005

关键词

hydrogen storage; transmission electron microscopy; crystallography; reactive hydride composite; additive; phase transformation

资金

  1. DFG (Deutsche Forschungsgemeinschaft) [PU 131/16-1, PI 1488/2-1]

向作者/读者索取更多资源

The addition of 3TiCl(3)center dot AlCl3 is found to improve the dehydrogenation kinetics of the reactive hydride composite LiBH4-MgH2. The growth process of MgB2 is studied, and it is observed that MgB2 prefers to form on TiB2 nanoparticles due to the creation of an interface that reduces the elastic strain energy density. The kinetics of MgB2 growth is described by the JMAK equation, and it is suggested that the nucleation center change from Mg to TiB2 leads to a transition from interface- to diffusion-controlled growth, resulting in a change in MgB2 morphology.
The reactive hydride composite (RHC) LiBH4-MgH2 is regarded as one of the most promising materials for hydrogen storage. Its extensive application is so far limited by its poor dehydrogenation kinetics, due to the hampered nucleation and growth process of MgB2. Nevertheless, the poor kinetics can be improved by additives. This work studied the growth process of MgB2 with varying contents of 3TiCl(3)center dot AlCl3 as an additive, and combined kinetic measurements, X-ray diffraction (XRD), and advanced transmission electron microscopy (TEM) to develop a structural understanding. It was found that the formation of MgB2 preferentially occurs on TiB2 nanoparticles. The major reason for this is that the elastic strain energy density can be reduced to similar to 4.7 x 10(7) J/m(3) by creating an interface between MgB2 and TiB2, as opposed to similar to 2.9 x 10(8) J/m(3) at the original interface between MgB2 and Mg. The kinetics of the MgB2 growth was modeled by the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation, describing the kinetics better than other kinetic models. It is suggested that the MgB2 growth rate-controlling step is changed from interface- to diffusion-controlled when the nucleation center changes from Mg to TiB2. This transition is also reflected in the change of the MgB2 morphology from bar- to platelet-like. Based on our observations, we suggest that an additive content between 2.5 and 5 mol% 3TiCl(3)center dot AlCl3 results in the best enhancement of the dehydrogenation kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据