4.6 Article

Synthesis and Characterization of Thermally Stable Lignosulfonamides

期刊

MOLECULES
卷 27, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27217231

关键词

biocomposites; biopolymers; chemical modification; lignosulfonate; sulfonamides

向作者/读者索取更多资源

This study focuses on the synthesis and characterization of sulfonamide derivatives of lignosulfonate, starting from sodium lignosulfonate. The modified materials showed improved thermal stability and have the potential to be used as fillers in biopolymeric composites.
Lignin, a highly aromatic macromolecule building plant cells, and cellulose are two of the most commonly occurring natural polymers. Lignosulfonate is a grade of technical lignin, obtained as a by-product in the paper and wood pulping industries, a result of the used lignin isolation method, i.e., sulfite process. In this work, sodium lignosulfonate is used as a starting material to manufacture sulfonamide derivatives of lignin in a two-step modification procedure. Since this direction of the lignin modification is rather rarely investigated and discussed, it makes a good starting point to expand the state of knowledge and explore the properties of lignosulfonamides. Materials obtained after modification underwent characterization by FTIR, SS-NMR, WAXD, SEM, and TGA. Spectroscopic measurements confirmed the incorporation of dihexylamine into the lignin structure and the formation of lignosulfonamide. The crystalline structure of the material was not affected by the modification procedure, as evidenced by the WAXD, with only minute morphological changes of the surface visible on the SEM imaging. The obtained materials were characterized by improved parameters of thermal stability in relation to the raw material. As-prepared sulfonamide lignin derivatives with a potential application as a filler in biopolymeric composites may become a new class of functional, value-added, sustainable additives.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据