4.6 Article

Glycerol-Based Retrievable Heterogeneous Catalysts for Single-Pot Esterification of Palm Fatty Acid Distillate to Biodiesel

期刊

MOLECULES
卷 27, 期 20, 页码 -

出版社

MDPI
DOI: 10.3390/molecules27207142

关键词

biodiesel; sulfonated; glycerol; by-product; PFAD; heterogenous catalyst; esterification

资金

  1. King Saud University (Riyadh, Saudi Arabia) [RSP-2021/78]

向作者/读者索取更多资源

This study utilized the by-product glycerol from previous transesterification as a precursor for acid catalyst synthesis in biodiesel production. Sulfonated glycerol-SO3H and glycerol-ClSO3H were synthesized through sulfonation with sulfuric acid and chlorosulfonic acid, respectively. Various analytical techniques were used to characterize the synthesized catalysts, which showed mesoporous structures but low surface areas. The acidity of the catalysts was sufficient for catalyzing biodiesel production, and optimal reaction conditions were determined. The catalysts could be reused for three reaction cycles but experienced deactivation.
The by-product of the previous transesterification, glycerol was utilised as an acid catalyst precursor for biodiesel production. The crude glycerol was treated through the sulfonation method with sulfuric acid and chlorosulfonic acid in a reflux batch reactor giving solid glycerol-SO3H and glycerol-ClSO3H, respectively. The synthesised acidic glycerol catalysts were characterised by various analytical techniques such as thermalgravimetric analyser (TGA), infrared spectroscopy, surface properties adsorption-desorption by nitrogen gas, ammonia-temperature programmed desorption (NH3-TPD), X-ray diffraction spectroscopy (XRD), elemental composition analysis by energy dispersive spectrometer (EDX) and surface micrographic morphologies by field emission electron microscope (FESEM). Both glycerol-SO3H and glycerol-ClSO3H samples exhibited mesoporous structures with a low surface area of 8.85 mm(2)/g and 4.71 mm(2)/g, respectively, supported by the microscopic image of blockage pores. However, the acidity strength for both catalysts was recorded at 3.43 mmol/g and 3.96 mmol/g, which is sufficient for catalysing PFAD biodiesel at the highest yield. The catalytic esterification was optimised at 96.7% and 98.2% with 3 wt.% of catalyst loading, 18:1 of methanol-PFAD molar ratio, 120 degrees C, and 4 h of reaction. Catalyst reusability was sustained up to 3 reaction cycles due to catalyst deactivation, and the insight investigation of spent catalysts was also performed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据