4.5 Article

MAP kinase and mammalian target of rapamycin are main pathways of gallbladder carcinogenesis: results from bioinformatic analysis of next generation sequencing data from a hospital-based cohort (NCT05404347)

期刊

MOLECULAR BIOLOGY REPORTS
卷 49, 期 11, 页码 10153-10163

出版社

SPRINGER
DOI: 10.1007/s11033-022-07874-4

关键词

Next Generation Sequencing (NGS); Gene Ontology (GO); Protein-protein interaction network (PPI); Gene Set Enrichment Analysis (GSEA); Signaling network; Disease Ontology (DO) and; Cross-Talk

向作者/读者索取更多资源

This study analyzed the pathogenesis of gallbladder cancer using NGS technology and identified multiple interacting signaling pathways. The results suggest that mTOR-MAPK targeted treatment may be an effective therapeutic option.
Background Gallbladder Cancer (GBC) is one of the most common cancers of the biliary tract and the third commonest gastrointestinal (GI) malignancy worldwide. The disease is characterized by the late presentation and poor outcome despite treatment, and hence, newer therapies and targets need to be identified. Methods The current study investigated various functionally enriched pathways in GBC pathogenesis involving the genes identified through Next Generation Sequencing (NGS) in a hospital-based cohort. The Pathway enrichment analysis and Gene Ontology (GO) were carried out after NGS, followed by the construction of the protein-protein interaction (PPI) network to discover associations among the genes. Results Of the thirty-three patients with GBC who were screened through next-generation sequencing (NGS), 27somatic mutations were identified. These mutations involved a total of 14 genes. The p53 and KRAS were commonly found to be mutated, while mutations in other genes were seen in one case each, the mean number of mutations were 1.2, and maximum mutation in a single case (eight) was seen in one case. The bioinformatics analysis identified MAP kinase, PI3K-AKT, EGF/EGFR, and Focal Adhesion PI3K-AKT-mTOR signaling pathways and cross-talk between these. Conclusion The results suggest that the complex crosstalk between the mTOR, MAPK, and multiple interacting cell signaling cascades can promote GBC progression, and hence, mTOR-MAPK targeted treatment will be an attractive option.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据