4.6 Article

LncRNA GNAS-AS1 knockdown inhibits keloid cells growth by mediating the miR-188-5p/RUNX2 axis

期刊

MOLECULAR AND CELLULAR BIOCHEMISTRY
卷 478, 期 4, 页码 707-719

出版社

SPRINGER
DOI: 10.1007/s11010-022-04538-6

关键词

Keloid; GNAS-AS1; miR-188-5p; RUNX2

向作者/读者索取更多资源

This study investigates the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. GNAS-AS1 is found to be upregulated in keloid clinical tissues and promotes cell proliferation, migration, and invasion. miR-188-5p and RUNX2 expression are negatively regulated by GNAS-AS1, and their inhibition or overexpression affects keloid cell growth and migration. These findings suggest that GNAS-AS1 could be a potential therapeutic target for keloid prevention and treatment.
Keloid is a common dermis tumor, occurring repeatedly, affecting the quality of patients' life. Long non-coding RNAs (lncRNAs) have crucial regulatory capacities in skin scarring formation and subsequent scar carcinogenesis. The intention of this study was to investigate the mechanism and function of GNAS antisense-1 (GNAS-AS1) in keloids. Clinical samples were collected to evaluate the expression of GNAS-AS1, RUNX2, and miR-188-5p by qRT-PCR. The proliferation, migration, and invasion of HKF cells were detected by CCK-8, wound healing, and Transwell assays. The expression levels of mRNA and protein were examined through qRT-PCR and Western blot assay. Luciferase reporter assay was used to identify the binding relationship among GNAS-AS1, miR-188-5p, and Runt-related transcription factor 2 (RUNX2). GNAS-AS1 and RUNX2 expressions were remarkably enhanced, and miR-188-5p expression was decreased in keloid clinical tissues and HKF cells. GNAS-AS1 overexpression promoted cells proliferation, migration, and invasion, while GNAS-AS1 knockdown had the opposite trend. Furthermore, overexpression of GNAS-AS1 reversed the inhibitory effect of 5-FU on cell proliferation, migration, and invasion. MiR-188-5p inhibition or RUNX2 overexpression could enhance the proliferation, migration, and invasion of HKF cells. GNAS-AS1 targeted miR-188-5p to regulate RUNX2 expression. In addition, the inhibition effects of GNAS-AS1 knockdown on HKF cells could be reversed by inhibition of miR-188-5p or overexpression of RUNX2, while RUNX2 overexpression eliminated the suppressive efficaciousness of miR-188-5p mimics on HKF cells growth. GNAS-AS1 knockdown could regulate the miR-188-5p/RUNX2 signaling axis to inhibit the growth and migration in keloid cells. It is suggested that GNAS-AS1 may become a new target for the prevention and treatment of keloid.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据