4.5 Article

Genotypic and phenotypic comparison of clinical and environmental Acinetobacter baumannii strains

期刊

MICROBIAL PATHOGENESIS
卷 172, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.micpath.2022.105749

关键词

Acinetobacter baumannii; Environmental; Clinical; MLST; ST2520; Antibiotic resistance

资金

  1. National Research Foundation of South Africa [130356]

向作者/读者索取更多资源

This study compared the genotypic, phenotypic, and antibiotic resistance profiles of clinical and environmental Acinetobacter baumannii isolates. The clinical isolates showed higher biofilm formation capability and resistance to antibiotics compared to the environmental isolates, which had increased susceptibility to antibiotics. The environmental isolates were assigned to a novel sequence type, indicating their presence in extra-hospital reservoirs.
The genotypic and phenotypic characteristics and antibiotic resistance (antibiogram) profiles of clinical (n = 13) and environmental (n = 7) Acinetobacter baumannii isolates were compared. Based on the Repetitive Extragenic Palindromic Sequence-based PCR (REP-PCR) analysis, the clinical and environmental A. baumannii isolates shared low genetic relatedness (similar to 60%). Multilocus sequence typing (MLST, Oxford scheme) indicated that the clinical A. baumannii were assigned to three sequence types (ST231, ST945 and ST848), while the environmental A. baumannii (excluding AB 14) were categorised into the novel ST2520. The majority of the clinical (excluding AB 5, CAB 11, CAC 37) and environmental (excluding AB 14 and AB 16) A. baumannii strains were then capable of phase variation with both the translucent (71.4%; 15/21) and opaque (95.2%; 20/21) colony phenotypes detected. The clinical isolates however, exhibited significantly (p < 0.05) higher biofilm formation capabilities (OD570: 2.094 +/- 0.497). Moreover, the clinical isolates exhibited significantly (p < 0.05) higher resistance to first line antibiotics, with 92.3% (12/13) characterised as extensively drug resistant (XDR), whereas environmental A. baumannii exhibited increased antibiotic susceptibility with only 57.1% (4/7) characterised as multidrug resistant (MDR). The environmental isolate AB 14 was however, characterised as XDR. In addition, only five clinical A. baumannii isolates exhibited colistin resistance (38.5%; 5/13). The current study highlighted the differences in the genotypic, phenotypic, and antibiotic resistance profiles of clinical and environmental A. baumannii. Moreover, the environmental strains were assigned to the novel ST2520, which substantiates the existence of this opportunistic pathogen in extra-hospital reservoirs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据