4.7 Article

Effect of twin boundaries on the strength of body-centered cubic tungsten nanowires

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.msea.2022.143826

关键词

Twin boundary; Strength; Tungsten; In situ; Dislocation

向作者/读者索取更多资源

This article reports the abnormal phenomenon that twin boundaries weaken the strength of body-centered cubic (BCC) tungsten. [1-11]-oriented W nanowires with (121) twin planes and free of dislocations were fabricated, and in situ tensile tests were performed. The fracture strength of the twinned W nanowire was found to be 13.7 GPa, 16% lower than that of the single-crystal W nanowire (16.3 GPa). The weakening mechanism was revealed to be the early nucleation of a crack at the intersection of the twin boundary with the surface.
Twin boundaries (TBs) are assumed to be obstacles to dislocation motion and increase the strength of metals. Here, we report the abnormal phenomenon that TBs reduce the strength of body-centered cubic (BCC) tungsten (W). [1-11]-oriented W nanowires with (121) twin planes and free of dislocations were fabricated by chemical vapor deposition. In situ tensile tests within the transmission electron microscope were performed on single -crystal and twinned W nanowires. The fracture strength of the twinned W nanowire was 13.7 GPa, 16% lower than that of the single-crystal W nanowire (16.3 GPa). The weakening mechanism of the TB was revealed by a combination of atomic-resolution characterizations and atomistic simulations. Twinned W nanowires failed by the early nucleation of a crack at the intersection of the TB with the surface. The standard strengthening mechanism by dislocation/TB interaction was not operative in W because the high Peierls barrier and stacking fault energy in W hinder dislocation nucleation and glide. These findings provide a new insight into the influence of TBs on the mechanical properties of BCC metals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据