4.7 Article

Effects of magnetic nanoscale combined radio frequency or microwave thawing on conformation of sea bass myosin heavy chain: a molecular dynamics study

期刊

出版社

WILEY
DOI: 10.1002/jsfa.12197

关键词

magnetic nanometer combined radiofrequency thawing; magnetic nanometer combined with microwave thawing; molecular dynamics simulation; sea bass; myosin heavy chain

向作者/读者索取更多资源

This study investigated the conformational changes of proteins during the thawing process using four different thawing methods. The results showed that radio frequency thawing combined with magnetic nanometer can effectively promote the thawing process of fish and stabilize the protein structure.
BACKGROUND The consumption of frozen foods inevitably involves a thawing process. Protein conformation changes during a short thawing process and the quantification of their effects remains challenging. Molecular dynamics simulations can be used to evaluate the conformational changes of protein occurring in food processing. RESULTS In the present study, four different thawing methods were used [i.e. magnetic nanometer combined with microwave thawing (MT-Mag), magnetic nanometer combined with radio frequency thawing (RT-Mag), radio frequency thawing (RT) and microwave thawing (MT)] to change the conformation of myosin heavy chain (MHC). The results obtained showed that, compared with the fresh sample, the hydrogen bond number and radius of gyration of the RT-Mag and RT groups were less decreased. Visual molecular dynamics STRIDE analysis showed that the content of the alpha helix was relatively high in the RT-Mag and MT-Mag groups. CONCLUSION These simulation results indicate that RT-Mag can be used as an effective method for promoting the thawing process of fish and better stabilizing the protein structure. These conclusions provide a theoretical realization for understanding the protein conformational transition during the thawing process and the realization of quantification and also provide guidance for choosing better thawing conditions without loss of nutritional properties. (c) 2022 Society of Chemical Industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据