4.7 Article

A model of porous plastic single crystals based on fractal slip lines distribution

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2022.104948

关键词

Plasticity; Limit-analysis; Void; Single crystal; Yield criterion

向作者/读者索取更多资源

This paper proposes a method of using discontinuous velocity fields based on FFT numerical results to analyze the strain localization problem of periodic distributions of voids in single crystals. The experimental results show that this new method can provide a good estimation of the macroscopic yield stress.
The ductile failure of crystalline materials is strongly linked to the growth of intragranular voids. The estimation of the overall yield criterion thus requires to take into account the anisotropic plastic behavior of the single crystal. In the framework of the kinematic limit-analysis approach, this problem has been considered up to now with Gurson-type isotropic trial velocity fields. In the present work, a different class of piecewise constant velocity fields is proposed based on a detailed analysis of FFT numerical results on the strain localization in porous single crystals with periodic distributions of voids. This original approach is implemented for the model 2D problem of a square or hexagonal array of cylindrical voids in a hexagonal close-packed single crystal with in-plane prismatic slip systems. For equibiaxial loadings, the assumption of discontinuous velocity field provides a good approximation of the smooth jumps observed in the numerical results. Consistently, this new proposal leads to a significant improvement on the macroscopic yield stress with respect to the estimate based on an isotropic velocity field. Our theoretical estimate almost coincides with the FFT numerical results for all the unit-cells and crystalline orientations considered.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据