4.5 Article

Proton Affinities of Alkanes

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jasms.2c00152

关键词

-

资金

  1. The NESTE Corporation

向作者/读者索取更多资源

Characterizing complex mixtures of large alkanes is vital for various fields, and tandem mass spectrometry is the only method capable of molecular-level characterization. However, the lack of available proton affinity values for alkanes has posed a challenge in this regard.
Chemical characterization of complex mixtures of large alkanes is critically important for many fields, including petroleomics and the development of renewable transportation fuels. Tandem mass spectrometry is the only analytical method that can be used to characterize such mixtures at the molecular level. Many ionization methods used in mass spectrometry involve proton transfer to the analyte. Unfortunately, very few proton affinity (PA) values are available for alkanes. Indeed, previous research has shown that most protonated alkanes (MH+) are not stable but fragment spontaneously via the elimination of a hydrogen molecule to form [M - H](+) ions. Here, the PAs of several n-alkanes and alkylcyclohexanes containing 5-8 carbon atoms, n-pentane, n-hexane, n-heptane, n-octane, cyclohexane, methylcyclohexane, and ethylcyclohexane, were determined via bracketing experiments by using a linear quadrupole ion trap mass spectrometer. Monitoring the formation of the [M - H](+) ions in reactions between the alkanes and protonated reference bases with known PAs revealed that the PAs of all the alkanes fell into the range 721 +/- 20 kJ mol(-1). In order to obtain a more accurate estimate of the relative PAs of different alkanes, two alkanes were introduced simultaneously into the ion trap and allowed to react with the same protonated reference base. Based on these experiments, the longer the alkyl chain in an n-alkane or alkylcyclohexane the greater the PA. Further, when considering alkanes with the same number of carbon atoms, the PAs of those with a cyclohexane ring were found to be greater than those with no such ring.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据