4.5 Article

Unexpected Gas-Phase Nitrogen-Oxygen Smiles Rearrangement: Collision-Induced Dissociation of Deprotonated 2-(N-Methylanilino)ethanol and Morpholinylbenzoic Acid Derivatives

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jasms.2c00210

关键词

-

向作者/读者索取更多资源

A nitrogen-oxygen Smiles rearrangement was reported to occur after collisional activation of the PhN(R)CH2CH2O- anion, leading to the formation of a phenoxide ion. The location of the negative charge determines whether Smiles rearrangement can occur, with alternative neutral losses dominating when the negative charge is on the nitrogen atom.
A nitrogen-oxygen Smiles rearrangement was reported to occur after collisional activation of the PhN(R)CH2CH2O- (R = alkyl) anion, which undergoes a five-membered ring rearrangement to form a phenoxide ion C6H5O-. When R = H, such a Smiles rearrangement is unlikely since the negative charge is more favorably located on the nitrogen atom than the oxygen atom; hence, alternative neutral losses dominate the fragmentation. For example, collisional activation of deprotonated 2-anilinoethanol (PhN-CH2CH2OH) leads to the formation of an anilide anion (C6H5NH-, m/z 92) rather than a phenoxide ion (C6H5O-, m/z 93.0343). However, when the amino hydrogen of 2-anilinoethanol is substituted by a methyl group, i.e., 2-(N-methylanilino)ethanol, a Smiles rearrangement does occur, leading to the phenoxide ion, as the negative charge can only reside on the oxygen atom. To confirm the Smiles rearrangement mechanism, 2-(N-methylanilino)ethanol-O-18 was synthesized and subjected to collisional activation, leading to an intense peak at m/z 95.0385, which corresponds to the O-18 phenoxide ion ([(C6H5O)-O-18](-)). The abundance of the phenoxide ion is sensitive to substituents on the N atom, as demonstrated by the observation that an ethyl substituent results in the rearrangement ion with a much lower abundance. The nitrogen-oxygen Smiles rearrangement also occurs for various morpholinylbenzoic acid derivatives with a multistep mechanism, where the phenoxide ion is found to be predominantly formed after loss of CO2, proton transfers, breaking of the morpholine ring, and Smiles rearrangement. The Smiles mechanism is also supported by density functional theory calculations and other observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据