4.8 Article

Catalytic N-H Bond Formation Promoted by a Ruthenium Hydride Complex Bearing a Redox-Active Pyrimidine-Imine Ligand

期刊

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.2c07800

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Catalysis Science program
  2. Samsung Scholarship
  3. [DE-SC0006498]

向作者/读者索取更多资源

The synthesis of a piano-stool ruthenium hydride with dual catalytic functions is described. The addition of a neutral supporting ligand successfully prevents a deleterious reaction pathway. The ruthenium hydride is an effective catalyst for various reactions.
The synthesis of a piano-stool ruthenium hydride, [(eta 5-C5Me5)Ru(PmIm)H] (PmIm = (N-(1,3,5-trimethylphenyl)-1-(pyrimidin-2-yl)ethan-1-imine), for the dual purpose of catalytic dihydrogen activation and subsequent hydrogen atom transfer for the formation of weak chemical bonds is described. The introduction of a neutral, potentially redox-active PmIm supporting ligand was designed to eliminate the possibility of deleterious C(sp2)-H reductive coupling and elimination that has been identified as a deactivation pathway with related rhodium and iridium catalysts. Treatment of [(eta 5-C5Me5)RuCl2]n with one equivalent PmIm ligand in the presence of zinc and sodium methoxide resulted in the isolation of the diruthenium complex, [(eta 5-C5Me5)Ru(PmIm)]2, arising from the C-C bond formation between two PmIm chelates. Addition of H2 to the ruthenium dimer under both thermal and blue light irradiation conditions furnished the targeted hydride, [(eta 5-C5Me5)Ru(PmIm)H], which has a relatively weak DFT-calculated Ru-H bond dissociation free energy (BDFE) of 47.9 kcal/mol. Addition of TEMPO to [(eta 5-C5Me5)Ru(PmIm)H] generated the 17-electron metalloradical, [(eta 5-C5Me5)Ru(PmIm)], which was characterized by EPR spectroscopy. The C-C bond forming process was reversible as the irradiation of [(eta 5-C5Me5)Ru(PmIm)]2 generated [(eta 5-C5Me5)Ru(PmIm)H] and a piano-stool ruthenium complex containing an enamide ligand derived from H-atom abstraction from the PmIm chelate. Equilibration studies were used to establish an experimental estimate of the effective Ru-H BDFE, and a value of 50.8 kcal/mol was obtained, in agreement with the observed loss of H2 and the DFT-computed value. The ruthenium hydride was an effective catalyst for the thermal catalytic hydrogenation of TEMPO, acridine, and a cobalt-imido complex and for the selective reduction of azobenzene to diphenylhydrazine, highlighting the role of this complex in catalytic weak bond formation using H2 as the stoichiometric reductant.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据