4.8 Article

Programmable Biopolymers for Advancing Biomedical Applications of Fluorescent Nanodiamonds

期刊

ADVANCED FUNCTIONAL MATERIALS
卷 25, 期 42, 页码 6576-6585

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/adfm.201502704

关键词

-

资金

  1. European Reseach Council Synergy Grant [319130-BioQ]
  2. Volkswagenstiftung
  3. Deutsche Forschungsgemeinschaft [SFB1149]

向作者/读者索取更多资源

A versatile biopolymer platform for advancing nanodiamonds (NDs) as unique magnetooptic materials for biomedical applications is presented here. Precision biopolymer coatings are designed by chemical reprogramming the functionalities of serum albumin via a straightforward synthesis protocol. Such biopolymers offer high biocompatibility and precise modification with various functional entities due to the large number of available reactive amino acid residues. Premodification of these biopolymers provides a convenient approach to customized surface functionalization of NDs. As an example, the anticancer drug doxorubicin (DOX) is conjugated to the biopolymer with high reproducibility and full characterization. The biopolymer-coated NDs reveal excellent colloidal stabilities in all physiological media tested, even after loading with high numbers of hydrophobic DOX. The intracellular distribution of NDs and DOX is analyzed in living cells by recording the fluorescence spectra in different cellular compartments, which proves efficient intracellular release of DOX from the carrier. Studies in vitro as well as in a chick tumor xenograft model reveal efficient antitumor effects. The facile and versatile biopolymer coating strategy reported herein will greatly accelerate the availability of customized NDs with reliable and reproducible features to exploit their great potential in single molecular bioimaging, in vivo biosensing, and high resolution quantum optics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据