4.6 Article

Switching in Nanoscale Molecular Junctions due to Contact Reconfiguration

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 126, 期 46, 页码 19843-19848

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c04370

关键词

-

资金

  1. FET
  2. [767187]

向作者/读者索取更多资源

Switching effects play a crucial role in the design and characterization of nanoscale molecular electronics systems. This study investigates the presence of switching events in reference molecular systems and highlights the importance of proper anchoring group selection and comparison with reference compounds in understanding the origin of switching in molecular break junctions.
Switching effects are key elements in the design and characterization of nanoscale molecular electronics systems. They are used to achieve functionality through the transition between different conducting states. In this study, we analyze the presence of switching events in reference molecular systems, which are not designed to have switching behavior, such as oligo(phenylene ethynylene)s and alkanes, using the mechanically controllable break junction technique. These events can be classified in two groups, depending on whether the breaking trace shows exponential decay or plateau-like features before the switch happens. We argue that the former correspond to junctions forming after rupture of the gold atomic point contact, while the latter can be related to a change in the contact geometry of the junction. These results highlight how a proper choice of anchoring group and careful comparison with reference compounds are essential to understanding the origin of switching in molecular break junctions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据