4.6 Article

How the Microstructure of MAPbI3 Powder Impacts Pressure-Induced Compaction and Optoelectronic Thick-Film Properties

期刊

JOURNAL OF PHYSICAL CHEMISTRY C
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcc.2c03329

关键词

-

资金

  1. German National Science Foundation DFG [PA 3373/3-1, MO 1060/32-1]
  2. KeyLab Electron and Optical Microscopy of the Bavarian Polymer Institute

向作者/读者索取更多资源

The study reveals that powder microstructure affects compaction processes and final film properties, larger particles result in less dense films with higher surface roughness, and exhibit more pronounced plastic deformation during pressure treatment. This deformation leads to a reduction in crystallite size and increased nonradiative, defect-associated excited state recombination, deteriorates the grain boundary quality, and facilitates ion migration.
Within the last few years, applying pressure to improve and alter the structural and optoelectronic properties of halide perovskite thin films and powder-based thick-film pellets has emerged as a promising processing method. However, a detailed understanding of the relationship between perovskite microstructure, pressing process, and final film properties is still missing. Here, we investigate the impact of powder microstructure on the compaction processes during pressure treatment and on the final properties of powder-pressed thick films, using the model halide perovskite methylammonium lead iodide (MAPbI(3)). Analyzing pressure relaxations together with XRD and SEM characterizations, we find that larger powder particles result in less compact thick films with higher surface roughness. Furthermore, larger particles exhibit stronger sintered connections between individual powder particles, resulting in less crushing and particle rearrangement but in more pronounced plastic deformation during pressure treatment. Moreover, plastic deformation of the powder particles leads to a reduction of crystallite size in the final film. This reduction results in increased nonradiative, defect-associated excited state recombination, as confirmed by photoluminescence investigations. More plastic deformation also deteriorates the grain boundary quality and consequently facilitates ion migration, which is reflected in higher electrical dark conductivities of the thick films. Thus, our work elucidates how important the design of the perovskite powder microstructure is for the pressure-induced compaction behavior and for the resulting structural, optical, and electrical thick-film properties. These insights will pave the way for tailored pressure processing of halide perovskite films with improved optoelectronic properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据