4.5 Article

Influence of Tie-Molecules and Microstructure on the Fluid Solubility in Semicrystalline Polymers

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.2c04600

关键词

-

资金

  1. Engineering and Physical Sciences Research Council (EPSRC) [EP/E016340, EP/J014958]
  2. Eli Lilly and Company [RCSRF18193]
  3. Royal Academy of Engineering [RCSRF18193]

向作者/读者索取更多资源

Predicting the absorption of gases and liquids in semicrystalline polymers is important for various applications. The mechanical and transport properties of these materials depend on the amount of solutes dissolved in them. In order to accurately predict the absorption, the free, unconstrained amorphous domains in the polymer must be included in the description, resulting in a multiscale model.
Predicting the absorption of gases and liquids in semicrystalline polymers is of critical importance for numerous applications; the mechanical and transport properties of these materials are highly dependent on the amount of solutes dissolved in their bulk. For most semicrystalline polymers which are in contact with an external fluid, the observed uptake of the solute is found to be lower than that predicted by treating the amorphous domains of the polymer as subcooled polymer melts at the same thermodynamic state. This observation has recently led to the hypothesis that the amorphous domains effectively behave as polymer liquids subject to an additional constraint pressure which reduces the equilibrium solubility in the domains. We present a new statistical mechanical model of semicrystalline polymers. The constraint pressure emerges naturally from our treatment, as a property of the interlamellar amorphous domains caused by the stretching and localization in space of the tie-molecules (polymer chains linking different lamellae). By assuming that the interlamellar domains exchange monomers reversibly with the lamellae, the model allows one to simultaneously predict the increase of constraint pressure at low temperatures and the variation of the lamellar thickness as a function of temperature-a phenomenon known as premelting. The sorption isotherms of a range of fluids in different polyethylene and polypropylene samples are determined experimentally and the data is compared with calculations of the new model using the SAFT-VR Mie EoS. In order to accurately predict the absorption close to the vapor pressure of the penetrant, we find that it is essential to include the free, unconstrained amorphous domains in the description, resulting in a multiscale model with two adjustable parameters (the fractions of tie-molecules and free amorphous domains) that characterize the morphology of a given semicrystalline polymer sample. The trends observed for the adjusted parameters qualitatively match other estimates reported in the literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据