4.5 Article

BODIPY-Based Multichromophoric Tripodal System as a Multifunctional Material

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.2c04712

关键词

-

资金

  1. Banaras Hindu University, Varanasi
  2. Department of Science and Technology (DST) New Delhi, India
  3. [R/Dev/D/IoE-/Incentive/2021-22/32197]
  4. [FR/FST/CSII-037/2015 (G) (C)]

向作者/读者索取更多资源

The strategic design, synthesis, and thorough characterizations of a redox-active BODIPY-based tripodal system (tri-BDP) displaying efficient aggregation-induced emission (AIE), great sensitivity toward the viscosity of a medium, ability for triplet photosensitization, singlet oxygen generation, and photooxidation have been described. The photophysical properties of tri-BDP in various solvents and in the solid state have been extensively investigated. It displayed efficient AIE and green (-,520) emission in acetonitrile/ether mixture and red (-,621 nm) emission in the solid state. Detailed viscosity-dependent studies suggested that it can act as a fluorescent molecular rotor. Triplet photosensitization, singlet oxygen generation, and photooxidation studies in the presence of 1,3-diphenylisobenzofuran and 1,5-dihydroxyl naphthalene suggested its high efficiency toward intersystem crossing and singlet oxygen generation. Detailed electrochemical investigations suggested the redox activity of the system. Hence, this system represents multifunctional features and can be applied as a functional material for various applications.
The strategic design, synthesis, and thorough characterizations of a redox-active BODIPY-based tripodal system (tri-BDP) displaying efficient aggregation-induced emission (AIE), great sensitivity toward the viscosity of a medium, ability for triplet photosensitization, singlet oxygen generation, and photooxidation have been described. The photophysical properties of tri-BDP in various solvents and in the solid state have been extensively investigated. It displayed efficient AIE and green (-,520) emission in acetonitrile/ether mixture and red (-,621 nm) emission in the solid state. Detailed viscosity-dependent studies suggested that it can act as a fluorescent molecular rotor. Triplet photosensitization, singlet oxygen generation, and photooxidation studies in the presence of 1,3-diphenylisobenzofuran and 1,5-dihydroxyl naphthalene suggested its high efficiency toward intersystem crossing and singlet oxygen generation. Detailed electrochemical investigations suggested the redox activity of the system. Hence, this system represents multifunctional features and can be applied as a functional material for various applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据