4.7 Article

Stability of (100) dislocations formed in W collision cascades

期刊

JOURNAL OF NUCLEAR MATERIALS
卷 569, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jnucmat.2022.153938

关键词

Defect morphology; (100) dislocations in crystal; Collision cascades; Radiation damage; Molecular dynamics; Stability of defects

向作者/读者索取更多资源

This study investigates the thermal stability and transition mechanism of (100) dislocations in irradiated W, revealing the activation energy required for the transition to more stable (111) dislocations. The stability of (100) dislocations increases with size, but not strictly. The internal configuration and inter-atomic potentials are found to affect the stability of the defects.
Experiments and simulations both have verified the presence of ( 100 ) dislocations in irradiated W. It is essential to know the properties and behavior of these defects to study the evolution of microstructures at higher scales. We study the thermal stability and transition mechanism of various ( 100 ) dislocations formed in a molecular dynamics (MD) database of 230 collision cascades using three different inter-atomic potentials. The activation energy to transition to more stable ( 111 ) dislocations is found for various ( 100 ) dislocation defects that transition within the 100 nanosecond time scale that is readily accessible to MD. The stability of ( 100 ) dislocations increases with size, but the trend is not strict. The reasons for irregularities are the aspects of internal configuration such as (i) the arrangement of ( 100 ) directed crowdions within the defect, (ii) the presence and arrangement of non-( 100 ) crowdions on the fringes of the defect. We show the typical pathways of transitions and discuss the sources of instability in the defect configurations. We also discuss the similarities and differences in stability found across different interatomic potentials. Understanding transition mechanisms and internal morphology gives insights into the stability of ( 100 ) dislocations, useful in higher scale models such as Kinetic Monte Carlo (KMC).(c) 2022 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据