4.6 Article

Signal processing and computational modeling for interpretation of SEEG-recorded interictal epileptiform discharges in epileptogenic and non-epileptogenic zones

期刊

JOURNAL OF NEURAL ENGINEERING
卷 19, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1741-2552/ac8fb4

关键词

partial epilepsy; interictal epileptiform discharges; identification of epileptogenic zone; stereo-electroencephalography; neural mass models

资金

  1. European Research Council (ERC) under the European Union [855109]
  2. European Research Council (ERC) [855109] Funding Source: European Research Council (ERC)

向作者/读者索取更多资源

This study investigates the generation mechanisms of IEDs in partial epilepsies through signal analysis and mathematical modeling. The researchers identify two classes of SWs and determine their distribution in epileptic and non-epileptic zones. The modeling results suggest a correlation between the morphology of IEDs and the degree of inhibition preservation.
Objective. In partial epilepsies, interictal epileptiform discharges (IEDs) are paroxysmal events observed in epileptogenic zone (EZ) and non-epileptogenic zone (NEZ). IEDs' generation and recurrence are subject to different hypotheses: they appear through glutamatergic and gamma-aminobutyric acidergic (GABAergic) processes; they may trigger seizures or prevent seizure propagation. This paper focuses on a specific class of IEDs, spike-waves (SWs), characterized by a short-duration spike followed by a longer duration wave, both of the same polarity. Signal analysis and neurophysiological mathematical models are used to interpret puzzling IED generation. Approach. Interictal activity was recorded by intracranial stereo-electroencephalography (SEEG) electrodes in five different patients. SEEG experts identified the epileptic and non-epileptic zones in which IEDs were detected. After quantifying spatial and temporal features of the detected IEDs, the most significant features for classifying epileptic and non-epileptic zones were determined. A neurophysiologically-plausible mathematical model was then introduced to simulate the IEDs and understand the underlying differences observed in epileptic and non-epileptic zone IEDs. Main results. Two classes of SWs were identified according to subtle differences in morphology and timing of the spike and wave component. Results showed that type-1 SWs were generated in epileptogenic regions also involved at seizure onset, while type-2 SWs were produced in the propagation or non-involved areas. The modeling study indicated that synaptic kinetics, cortical organization, and network interactions determined the morphology of the simulated SEEG signals. Modeling results suggested that the IED morphologies were linked to the degree of preserved inhibition. Significance. This work contributes to the understanding of different mechanisms generating IEDs in epileptic networks. The combination of signal analysis and computational models provides an efficient framework for exploring IEDs in partial epilepsies and classifying EZ and NEZ.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据