4.7 Article

An artificial neural network approach for tool path generation in incremental sheet metal free-forming

期刊

JOURNAL OF INTELLIGENT MANUFACTURING
卷 30, 期 2, 页码 757-770

出版社

SPRINGER
DOI: 10.1007/s10845-016-1279-x

关键词

Sheet metal processing; Computer integrated manufacturing; Flexible manufacturing systems; Neural networks; Learning systems

向作者/读者索取更多资源

This research considers a specific incremental sheet metal free-forming process, which allows for individualized component manufacturing. However, for a reasonable application in practice, an automation of the manual process is mandatory. Unfortunately, up to now, no general tool path generation strategies are available when free-forming processes are to be utilized. On this account, for the investigated driving process, a holistic concept for deriving tool paths for the production of sheet metal parts directly from a digital component model is presented adopting an artificial neural network architecture. Consequently, for the very first time an automated part production is possible in incremental sheet metal free-forming applications. For this, a suitable network input and output structure is designed. Balanced sample data sets are generated for appropriate training. An associated network topology is determined and undergoes a training and testing phase. The influence of different training algorithms, network configurations, as well as training sets have been studied in relation to a feedforward network structure with backpropagation. Finally, the proposed computer integrated manufacturing system is subject to validation and verification by automated sheet part production, which is followed by concluding remarks on the capabilities and limits of the concept.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据