4.7 Review

Enabling Early Obstructive Sleep Apnea Diagnosis With Machine Learning: Systematic Review

期刊

出版社

JMIR PUBLICATIONS, INC
DOI: 10.2196/39452

关键词

machine learning; obstructive sleep apnea; systematic review; polysomnography

资金

  1. Fundacao para a Ciencia e Tecnologia [PD/BD/13553/2018, COVID/BD/152608/2022]
  2. National Funds through Fundacao para a Ciencia e a Tecnologia, I.P., within the Center for Health Technology and Services Research, Research and Development Unit
  3. [UIDP/4255/2020]

向作者/读者索取更多资源

This study aimed to evaluate the effectiveness of using machine learning approaches for disease screening in adult patients with suspected obstructive sleep apnea (OSA). The results showed that various machine learning techniques were widely used, but there were still issues of lack of external validation and inconsistent OSA criteria definition.
Background: American Academy of Sleep Medicine guidelines suggest that clinical prediction algorithms can be used to screen patients with obstructive sleep apnea (OSA) without replacing polysomnography, the gold standard.Objective: We aimed to identify, gather, and analyze existing machine learning approaches that are being used for disease screening in adult patients with suspected OSA. Methods: We searched the MEDLINE, Scopus, and ISI Web of Knowledge databases to evaluate the validity of different machine learning techniques, with polysomnography as the gold standard outcome measure and used the Prediction Model Risk of Bias Assessment Tool (Kleijnen Systematic Reviews Ltd) to assess risk of bias and applicability of each included study. Results: Our search retrieved 5479 articles, of which 63 (1.15%) articles were included. We found 23 studies performing diagnostic model development alone, 26 with added internal validation, and 14 applying the clinical prediction algorithm to an independent sample (although not all reporting the most common discrimination metrics, sensitivity or specificity). Logistic regression was applied in 35 studies, linear regression in 16, support vector machine in 9, neural networks in 8, decision trees in 6, and Bayesian networks in 4. Random forest, discriminant analysis, classification and regression tree, and nomogram were each performed in 2 studies, whereas Pearson correlation, adaptive neuro-fuzzy inference system, artificial immune recognition system, genetic algorithm, supersparse linear integer models, and k-nearest neighbors algorithm were each performed in 1 study. The best area under the receiver operating curve was 0.98 (0.96-0.99) for age, waist circumference, Epworth Somnolence Scale score, and oxygen saturation as predictors in a logistic regression. Conclusions: Although high values were obtained, they still lacked external validation results in large cohorts and a standard OSA criteria definition. Trial Registration: PROSPERO CRD42021221339; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=221339(J Med Internet Res 2022;24(9):e39452) doi: 10.2196/39452

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据