4.6 Article

The divergent pH dependence of substrate turnover in dehaloperoxidases A and B

期刊

JOURNAL OF INORGANIC BIOCHEMISTRY
卷 238, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2022.112029

关键词

Oxidation; Mass spectrometry; Reaction mechanism; Marine; Chlorinated molecules; Stopped-flow

向作者/读者索取更多资源

The pH-dependent peroxidase activity of dehaloperoxidases A and B was studied. Both isozymes followed the peroxidase ping-pong kinetic model at pH 7.0, but showed deviation at lower pH values and higher TCP concentrations due to multiple processes.
The pH-dependent peroxidase activity in both dehaloperoxidases A and B was studied by a kinetic assay, stopped flow spectroscopy, resonance Raman spectroscopy, and high-performance liquid chromatography at pH 5.0, 6.0, and 7.0. At pH 7.0, both isozymes follow the peroxidase ping-pong kinetic model derived from the three-step reaction scheme using the steady-state approximation. However, deviation from standard saturation behavior is observed at pH < 6.0 and [TCP] > 0.7 mM, owing to multiple processes: a) self-inhibition of TCP by internal binding; b) oxidation of the product by a pH-and concentration-dependent secondary reaction; and c) formation of an inactive species known as compound RH in the absence of oxidizable substrate. Although DHP-A and DHP-B differ by only 5 amino acids, they show a complete trend reversal in their observed peroxidase kinetics and product yields. Although at pH 7.0 DHP-B had higher TCP oxidation activity than DHP-A as reported previously, as pH was lowered, DHP-A appeared to have a higher peroxidase activity than DHP-B. This is an unprecedented result. However, the fact that there are multiple processes contributing to both kinetics and yield of TCP oxidation complicates interpretation of these data. Deactivation via compound RH and self-inhibition are pH dependent reactions that compete with substrate oxidation. Compound RH formation was observed to be rapid at low pH. A complete set of control experiments were conducted to differentiate the various contributions to the observed enzyme kinetics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据