4.7 Article

Design flood estimation using extreme Gradient Boosting-based on Bayesian optimization

期刊

JOURNAL OF HYDROLOGY
卷 613, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2022.128341

关键词

Regional flood frequency analysis; XGB; Ungauged catchments; CAMELS dataset

资金

  1. SERB under the scheme Early Career Research Award [ECR/16/1721]

向作者/读者索取更多资源

Regional Flood Frequency Analysis (RFFA) is a widely used approach for estimating design floods. This study developed an XGB-based machine learning model for RFFA and flood estimation, which showed high accuracy in estimating design flood and visualized the importance of catchment features.
Regional Flood Frequency Analysis (RFFA) is one of the widely used approaches for estimating design floods in the ungauged basins. We developed an eXtreme Gradient Boost (XGB) machine learning model for RFFA and flood estimation. Our approach relies on developing a regression model between flood quantiles and the commonly available catchment descriptors. We used CAMELs data for 671 catchments from the USA to test the approach's efficacy. The results were compared with the traditional Multiple Linear Regression methods and Artificial Neural Networks. Results revealed that the XGB-based approach estimated design flood with the highest accuracy during training and validation with minor mean absolute error, root mean square error values, and percentage bias ranging from -10 to + 10. The importance of each catchment feature is visualized by three different approaches Gini Impurity, Permutation, and Dropout Loss Feature Ranking. We observed that the most dominating variables are rainfall intensity, slope, snow fraction, soil porosity, and temperature. It is observed that the importance of these variables is a function of the hydroclimatic regions and varies with space. In contrast, mean annual areal potential evapotranspiration, mean annual rainfall, fraction forest area, and soil conductivity have low significance in estimating design flood for an ungauged catchment. Indeed, the proposed XGB-based approach has broader applicability and replicability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据