4.7 Article

Wildland-urban interface fire ashes as a major source of incidental nanomaterials

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 443, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2022.130311

关键词

Incidental nanomaterials; Wildland-urban interface fire; Fire ash; Metals and metalloids

向作者/读者索取更多资源

This study investigated the concentrations and nature of incidental nanomaterials (INMs) in wildfire ashes collected after the 2020 fire season in northern California. The concentrations of metals and metalloids were higher in structural/vehicle-derived ashes compared to vegetation-derived ashes and soils. The study identified various carbonaceous INMs and metal-bearing INMs in the form of nanoparticles in the ashes, highlighting the importance of further research on their formation, transformation, reactivity, fate, and effects.
Although metal and metalloid concentrations in wildfire ashes have been documented, the nature and concen-trations of incidental nanomaterials (INMs) in wildland-urban interface (WUI) fire ashes have received consid-erably less attention. In this study, the total metal and metalloid concentrations of 57 vegetation, structural, and vehicle ashes and underlying soils collected at the WUI following the 2020 fire season in northern California - North Complex Fire and LNU Lightning Complex Fire - were determined using inductively coupled plasma-time of flight-mass spectrometry after microwave-assisted acid digestion. The concentrations of Ti, Zn, Cu, Ni, Pb, Sn, Sb, Co, Bi, Cr, Ba, As, Rb, and W are generally higher in structural/vehicle-derived ashes than in vegetation -derived ashes and soils. The concentrations of Ca, Sr, Rb, and Ag increased with increased combustion completeness (e.g., black ash < gray ash < white ash), whereas those of C, N, Zn, Pb, and In decreased with increased combustion completeness. The concentration of anthropogenic Ti - determined by mass balance calculations and shifts in Ti/Nb above the natural background ratios - was highest in vehicle ash (median: 30.8 g kg -1, range: 4.5-41.0 g kg -1) followed by structural ash (median: 5.5 g kg -1, range: of 0-77.4 g kg -1). Various types of carbonaceous INM (e.g., amorphous carbon, turbostratic-like carbon, and carbon associated with zinc oxides) and metal-bearing INMs (e.g., Ti, Cu, Fe, Zn, Mn, Pb, and Cr) with sizes between few nanometers to few hundreds of nanometers were evidenced in ashes using transmission electron microscopy, including energy dispersive X-ray spectroscopy. Overall, this study demonstrates the abundance of a variety of metals and met-alloids in the form of INMs in WUI fire ashes. This study also highlights the need for further research into the formation, transformation, reactivity, fate, and effects of INMs during and following fires at the WUI.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据