4.3 Article

KCa1.1 channels contribute to optogenetically driven post-stimulation silencing in cerebellar molecular layer interneurons

期刊

JOURNAL OF GENERAL PHYSIOLOGY
卷 155, 期 1, 页码 -

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.202113004

关键词

-

资金

  1. Agence National de la Recherche [ANR-18-CE16-0010-01]

向作者/读者索取更多资源

Using optical activation, this study reveals that neuronal activity in the cerebellar cortex can be increased but also paused after the stimulation. The post-stimulation silencing is likely due to the activation of specific potassium channels.
Using cell-attached recordings from molecular layer interneurons (MLI) of the cerebellar cortex of adult mice expressing channel rhodopsin 2, we show that wide-field optical activation induces an increase in firing rate during illumination and a firing pause when the illumination ends (post-stimulation silencing; PSS). Significant spike rate changes with respect to basal firing rate were observed for optical activations lasting 200 ms and 1 s as well as for 1 s long trains of 10 ms pulses at 50 Hz. For all conditions, the net effect of optical activation on the integrated spike rate is significantly reduced because of PSS. Three lines of evidence indicate that this PSS is due to intrinsic factors. Firstly, PSS is induced when the optical stimulation is restricted to a single MLI using a 405-nm laser delivering a diffraction-limited spot at the focal plane. Secondly, PSS is not affected by block of GABA-A or GABA-B receptors, ruling out synaptic interactions amongst MLIs. Thirdly, PSS is mimicked in whole-cell recording experiments by step depolarizations under current clamp. Activation of Ca-dependent K channels during the spike trains appears as a likely candidate to underlie PSS. Using immunocytochemistry, we find that one such channel type, KCa1.1, is present in the somato-dendritic and axonal compartments of MLIs. In cell-attached recordings, charybdotoxin and iberiotoxin significantly reduce the optically induced PSS, while TRAM-34 does not affect it, suggesting that KCa1.1 channels, but not KCa3.1 channels, contribute to PSS. Optical activation of channel rhodopsin is used to increase neuronal activity. In cerebellar interneurons, it actually leads to a biphasic activation/inhibition sequence. In these cells, activation of KCa1.1 channels contributes to the post-stimulus inhibition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据