4.7 Article

The influence of shock speed variation on radiation and thermochemistry experiments in shock tubes

期刊

JOURNAL OF FLUID MECHANICS
卷 948, 期 -, 页码 -

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/jfm.2022.727

关键词

plasmas; shock waves; hypersonic flow

向作者/读者索取更多资源

Shock tubes are crucial for the aerothermodynamic modeling of atmospheric entry vehicles. This study isolates and confirms the importance of shock deceleration effect through experiments, linking shock speed variation to experimental results using a numerical tool. These findings are important for both past and present research.
Shock tubes are a crucial source of experimental data for the aerothermodynamic modelling of atmospheric entry vehicles. Notably, many chemical-kinetic and radiative models are validated directly against optical measurements from these facilities. Typically, the incident shock speed at the location of the experimental measurement is taken to be representative of the test slug; however, the shock velocity can vary substantially upstream of this location. These variations have been long posited as a source of disagreement with computational predictions, although a definitive link has proved elusive. This work describes a series of experiments which aim to isolate and confirm the importance of the shock deceleration effect. This is achieved by generating different shock trajectories and comparing the post-shock trends in atomic oxygen emission and electron density. These trends are shown to be directly linked to the upstream shock speed variations using a recently developed numerical tool (LASTA). The close agreement of the comparisons confirms the importance of shock speed variation for shock tube experiments; these findings have direct and potentially critical relevance for all such studies, both past and present.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据