4.7 Article

Ginkgo biloba L. extract prevents steroid-induced necrosis of the femoral head by rescuing apoptosis and dysfunction in vascular endothelial cells via the PI3K/AKT/eNOS pathway

期刊

JOURNAL OF ETHNOPHARMACOLOGY
卷 296, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2022.115476

关键词

Ginkgo biloba L.; Glucocorticoid; Osteonecrosis; Vascular endothelial cell; Apoptosis; Angiogenesis

资金

  1. Dalian Health Commission, medical key specialty of Dengfeng project [(2021)243]

向作者/读者索取更多资源

Ginkgo biloba L. extract (EGb) has been widely used for its diverse pharmacological properties. This study aimed to investigate the effect and mechanism of EGb in preventing steroid-induced necrosis of the femoral head (SINFH).
Ethnopharmacological relevance: Ginkgo biloba L. extract (EGb) is one of the world's most extensively used herbal medicines. Due to the diverse pharmacological properties of EGb, it has been used in the treatment of neurological illnesses, as well as cardiovascular and cerebrovascular ailments. However, the effect and pharmacological mechanism of EGb on steroid-induced necrosis of the femoral head (SINFH) are still unclear. Aim of the study: SINFH remains a challenging problem in orthopedics. Previous investigations have shown that EGb has the potential to reduce the occurrence of SINFH. The goal was to determine the effect and mechanism of EGb in preventing SINFH by inhibiting apoptosis and improving vascular endothelial cells (VECs) functions. Materials and methods: CCK-8, nitric oxide (NO) production and flow cytometry were used to determine the cell apoptosis and function. The scratch and angiogenesis tests assessed migration and tube formation. Western blot analysis detected the expressions of apoptosis-related proteins and PI3K/AKT/eNOS pathway-related proteins. Apoptosis and angiogenesis were also detected treated with the inhibitors. A mouse model of SINFH was established. Paraffin section was used to determine the necrotic pathology and apoptosis. Vessels in the femoral heads were assessed by immunofluorescence staining. Results: When stimulated by methylprednisolone (MPS), cell viability, NO generation and tube formation were decreased, the apoptotic rate increased. Simultaneously, MPS decreased the expression levels of p-PI3K, p-AKT, and p-eNOS. EGb increased the expression levels of these proteins, restrained apoptosis, and restored cell functions. The addition of the inhibitors decreased anti-apoptotic effect and angiogenesis. In addition, when compared to the model mice, there were fewer empty lacunae and normal trabecular arrangement after taking different doses of EGb. The protective effect was also confirmed by the vascular quantitative analysis in vivo. Conclusion: This study established that EGb increased endothelial cell activity and inhibited apoptosis and function loss induced by MPS, elucidating the effect and molecular mechanism of EGb on early SINFH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据